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Abstract—Spatial filtering constitutes an integral part of build-
ing EEG-based Brain-Computer Interfaces (BCIs). Algorithms
frequently used for spatial filtering, such as Common Spatial
Patterns (CSP) and Independent Component Analysis (ICA),
require labeled training data for identifying filters that provide
information on a subject’s intention, which renders these algo-
rithms susceptible to overfitting on artifactual EEG components.
In this study, Beamforming is employed to construct spatial
filters that extract EEG sources originating within pre-defined
regions of interest (ROIs) within the brain. In this way, neuro-
physiological knowledge on which brain regions are relevant for
a certain experimental paradigm can be utilized to construct
unsupervised spatial filters that are robust against artifactual
EEG components. Beamforming is experimentally compared with
CSP and Laplacian spatial filtering in a two-class motor-imagery
paradigm. It is demonstrated that Beamforming outperforms
CSP and Laplacian spatial filtering on noisy datasets, while
CSP and Beamforming perform almost equally well on datasets
with few artifactual trials. It is concluded that Beamforming
constitutes an alternative method for spatial filtering that might
be particularly useful for BCIs used in clinical settings, i.e., in an
environment where artifact-free datasets are difficult to obtain.

I. I NTRODUCTION

NON-INVASIVE Brain-Computer Interfaces (BCIs) are
devices that infer a subject’s intention from non-invasive

measurements of brain activity. BCIs thereby enable subjects
to communicate without utilizing the peripheral nervous sys-
tem. This is of particular interest to subjects with damage to
the peripheral nervous system, e.g., caused by amyotrophic
lateral sclerosis (ALS) or brain stem stroke, for which normal
communication is impaired or even impossible. A general
introduction to research on non-invasive BCIs is given in
[24]. In principle, any non-invasive recording modality of
brain activity, such as electroencephalography (EEG), magne-
toencephalography (MEG), or functional magnetic resonance
imaging (fMRI), can be used to construct a non-invasive
BCI. Of these modalities, EEG is the most affordable and
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most widely available. Accordingly, the work presented in this
article focuses on EEG recordings. However, all results canbe
adapted to MEG recordings with relative ease.

One of the largest obstacles to constructing powerful BCIs
based on EEG is the low signal-to-noise-ratio (SNR) of EEG
recordings. The components of the EEG providing information
on the user’s intention are usually heavily cloaked by ongoing
background activity of the brain, hindering an effective infer-
ence of the user’s intention. One commonly employed strategy
to improve the SNR is linear spatial filtering. Here, EEG
measurements from multiple sites on the scalp are linearly
combined in order to optimally attenuate EEG sources not
providing information on the user’s intention. Constructing
good spatial filters however is a difficult problem, since it is
in general unknown which characteristics of the EEG provide
maximum information on the user’s intention, i.e., how the
user’s intention is encoded in the electric field of the brain. It
is known, however, that subjects are capable of intentionally
inducing changes in the power of spectral components of
the electric field of the brain. For example, motor imagery
of different limbs can be used to induce event related syn-
chronization/desynchronization (ERS/ERD) in those areasof
the motor cortex representing the specific limbs (as reviewed
in [19]). As first demonstrated in [20], this can be used to
construct a non-invasive BCI. Most BCIs based on EEG are
currently based on motor imagery paradigms [13], which is
also the type of paradigm used in the experimental evaluation
of the work presented here. In this context, linear spatial
filters are considered optimal if they maximally attenuate the
variance of those EEG sources that are not modulated by motor
imagery.

One of the the most successful algorithms for spatial
filtering in non-invasive BCIs based on motor imagery is
the Common Spatial Patterns (CSP) algorithm, introduced to
the BCI-community in [21]. CSP is a supervised algorithm
designed for two-class paradigms. It constructs linear spatial
filters that maximize the ratio of class-conditional variances
of extracted EEG sources. Excellent classification results
have been reported using CSP, e.g., in one of the winning
entries to the BCI-competition 2003 [2]. Furthermore, there
is evidence that CSP is optimal in terms of maximizing
mutual information of extracted features and the subject’s
intention [9]. However, being a supervised algorithm, CSP
suffers from overfitting phenomena [3]. Instead of extracting
sources providing information on the subject’s intention,CSP
often focuses on artifactual components. This is due to the fact
that the variance of artifactual EEG components often exceeds
that of endogenous components of the brain. If a certain type
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of artifact is more pronounced in the EEG training data of
one class than in the EEG data of the other class, the ratio
of class-conditional variances is maximized by extractingthe
artifactual EEG component that does not provide information
on the subject’s intention. Please note in the context of CSP
overfitting should not be understood as necessarily overfitting
on the zero-one loss function used for classification, but rather
as overfitting on the CSP loss function of the ratio of class-
conditional variances.

Another popular approach to spatial filtering in non-invasive
BCIs is Independent Component Analysis (ICA) (see [5] for
a general introduction to ICA and [4] for an introduction to
spatial filtering in BCIs by ICA). ICA computes spatial filters
in an unsupervised manner by decomposing the observed EEG
into statistically independent components (ICs). However, after
computing the ICs it is necessary to identify those that provide
maximum information on the subject’s intention. To the best
of the authors’ knowledge this has only been demonstrated
using labeled training data, which makes spatial filtering by
ICA susceptible to overfitting as well.

In general, supervised algorithms such as CSP and ICA
perform well if the recorded EEG data is not contaminated by
artifacts. For noisy datasets supervised methods tend to focus
on artifactual components, which often results in unsatisfac-
tory classification results. While this is not of primary concern
in research environments where experiments can be carried
out with healthy subjects under optimal conditions, EEG data
recorded from patients in clinical environments are usually
heavily contaminated by artifacts, e.g., as caused by electric
devices used for life-support or monitoring purposes or by
medical care during the recording session. It is hence desirable
to develop algorithms for spatial filtering that perform well
on noisy datasets, i.e., that are more robust against artifactual
components of the EEG.

One way to render spatial filtering more robust against
artifactual components is to focus on unsupervised methods
that do not rely on labeled training data. In motor imagery
paradigms, it has been demonstrated that Laplacian spatial
filtering substantially increases classification accuracywith-
out being prone to overfitting [14]. Laplacian spatial filters,
however, assign weights to each electrode in a rather ad-hoc
manner which can not be regarded as optimal. Furthermore,
in Laplacian spatial filtering only few electrodes are used,
thereby discarding potentially useful information recorded at
other locations on the scalp.

In this article, a different approach to unsupervised spatial
filtering is proposed. In many experimental paradigms neuro-
physiological knowledge is available on which regions of
the brain provide information on a subject’s intention. For
example, it is well known that in motor imagery paradigms
EEG components originating in those areas of the motor cortex
representing the specific limbs provide information on the
user’s intention [10], [19]. In this study, linear spatial filters
are presented that utilize this a-priori knowledge by optimally
attenuating the variance of all EEG sources not originatingin
chosen regions of interest (ROIs) within the brain. By choosing
ROIs according to neuro-physiological a-priori knowledgefor
a given paradigm, it is possible to construct linear spatialfilters

that a) optimally attenuate EEG sources which do not provide
information on the subject’s intention, and b) are robust against
artifactual EEG components due to their unsupervised nature.

In EEG/MEG analysis, spatial filters extracting sources from
certain regions within the brain are commonly known as
Beamformers (reviewed in [8]). In fact, the Beamforming ap-
proach presented here is similar to the MaxSNR Beamformer
well known in the area of array signal processing (cf. [23]).
However, to the best of the authors’ knowledge, this work is
the first to apply the concept of Beamforming in the context
of non-invasive BCIs. Please note, however, that a preliminary
version of this work has been presented in [11].

The structure of this article is as follows. In Section II-A,
the notation used throughout this article is introduced. The
Beamforming approach to linear spatial filtering is presented
in Section II-B, and the properties of the obtained Beamformer
are discussed in Section II-C. In Section III, experimental
results from a two-class motor imagery paradigm of ten
healthy subjects are presented. Classification results obtained
with Beamforming, CSP, and Laplacian spatial filtering are
compared, and the feasibility of BCIs with real-time feedback
based on Beamforming is demonstrated. The article concludes
with a discussion of the results in Section IV.

II. M ETHODS

A. Notation

Throughout this article vectors are denoted by bold letters
and matrices by capital letters. Accordingly,x(t) ∈ R

M refers
to one sample of EEG data recorded at timet at M electrodes.
If the time index is dropped,x is treated as aM -dimensional
stationary random variable. A spatial filter is denoted byw ∈

R
M , and the spatially filtered EEG data byy(t) = w

T
x(t) ∈

R. Spatial covariance matrices are denoted byR(.).

B. Spatial filtering by Beamforming

In this section, a spatial filter is derived that optimally
attenuates the variance of EEG sources outside a pre-defined
ROI. In general, it is desirable to completely eliminate EEG
sources originating outside the ROI. This, however, is not
possible due to the ill-posed nature of the inverse problem of
EEG. In EEG recordings, the continuous current distribution
within the brain, that gives rise to the EEG, is mapped onto
a finite number of measurement electrodes. This corresponds
to a mapping from an infinite to a finite dimensional space.
Accordingly, estimating EEG sources originating in a certain
ROI constitutes an underdetermined problem. The best one
can do is to find a spatial filter that in some sense optimally
attenuates all sources outside the ROI. Since it is assumed here
that only variance changes provide information on the subject’s
intention, optimal attenuation is defined as maximizing the
ratio of variances of EEG sources originating inside and
outside the ROI. In mathematical terms, the goal is to compute
a spatially filtered EEG signal

y(t) = w
∗T

x(t) (1)

with

w
∗ = argmax

w∈RM

{

w
TRROIw

wTROutw

}

(2)
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andRROI/Out ∈ R
M×M the spatial covariance matrices of those

components of the EEG originating within/outside the ROI and
measured at theM electrodes. Since (2) is in the form of the
well-known Rayleigh quotient, solutions to (2) are given by
the eigenvectors of the generalized eigenvalue problem

RROIw = λROutw. (3)

Since it further holds that for an eigenvalueλ∗ with associated
eigenvectorw∗

λ∗ =
w

∗TRROIw
∗

w∗TROutw
∗
, (4)

the eigenvector of (3) with the largest eigenvalue constitutes
the desired Beamformer.

It then remains to determine the covariance matrices
RROI/Out. These can not be computed directly from measured
data and thus have to be approximated. Towards this, first
note that the EEG generated by the brain and measured atM
locations on the scalp is given by [17]

x(t) =

∫

V

L(r, r′)P (r′, t)dV (r′), (5)

with V the volume of the brain,P : R
3
× R 7→ R

3 the
tissue dipole moment (source strength) at positionr

′ and time
t in x, y, and z-direction,r ∈ R

3M the vector describing
the x, y, and z-position of theM sensors on the scalp, and
L : R

3
× R

3
7→ R

M×3 the so called leadfield equation,
describing the projection strength of a source with dipole
moment in x, y, and z-direction at positionr′ to the measured
electric potentials at the sensor locationsr. Note that the
leadfield equation incorporates all geometric and conductive
properties of the head. Without loss of generality, it is assumed
that x has zero mean. The integral in (5) can be split up into
the contributions to the EEG from within and from outside the
ROI, resulting in

x(t) =

∫

ROI

L(r, r′)P (r′, t)dV (r′)

+

∫

V \ROI

L(r, r′)P (r′, t)dV (r′)

= xROI(t) + xOut(t). (6)

Assuming stationarity of the EEG and uncorrelatedness of
EEG sources within and outside the ROI, the covariance matrix
of the EEG recordings is given by

Rx = RROI + ROut. (7)

Inserting (7) into (3) then results in

RROIw = λ̃Rxw, (8)

with λ̃ = λ/(1 + λ). Since Rx can be estimated from
recorded EEG data, onlyRROI remains to be determined. This
can be approached by first approximating the integral of the
contribution of sources within the ROI to the measured EEG
in (6) as

xROI(t) = α

J
∑

j=1

L(r, r′
j)P (r′

j , t), (9)

with r
′
j , j = 1, . . . , J, the locations of an equally spaced grid

with J points within the ROI andα some numerical constant.
The electric field at theM electrodes on the scalp due to
sources within the ROI can thus be approximated as

xROI(t) = αLp(t), (10)

with the leadfield matrixL ∈ R
M×3J describing the projection

strength in x, y, and z-direction of the sources at theJ grid
points to theM electrodes, andp(t) ∈ R

3J representing the
dipole moments of theJ sources. Sincex has zero mean and
the EEG is assumed to be stationary, the covariance matrix of
xROI can be written as

RROI = α2LRpLT, (11)

with Rp the source covariance matrix of sources within the
ROI. Inserting (11) into (8) and lettinĝλ = λ̃/α2, the desired
spatial filter is finally obtained as the eigenvector with the
largest eigenvalue of the generalized eigenvalue problem

LRpLT
w = λ̂Rxw. (12)

The leadfield matrixL describes the projection of sources
within the ROI to the EEG electrodes and thus implicitly
defines the ROI. It has to be computed using a suitable model
of EEG volume conduction (reviewed in [1]). In this study, a
four-shell spherical head model is utilized [22]. Furthermore,
the covariance matrix of EEG sources within the ROI has to be
specified. In absence of any prior knowledge, it is assumed that
Rp equals the identity matrix. The eigenvector of (3) with the
largest eigenvalue, which constitutes the desired Beamformer
w

∗, can then be computed with standard tools for numerical
computation (e.g., with the commandeig in Matlab).

C. Beamformer properties

In the derivation of the Beamformer several assumptions are
made that warrant a further discussion.

First, it is assumed that EEG sources within and outside the
ROI are uncorrelated. This assumption is probably violatedfor
sources outside but close to the ROI. Nevertheless, this is an
useful assumption, since it allows formulating the generalized
eigenvalue problem in terms of the observed EEG covariance
matrix. In this way, the Beamformer can be adapted to
recorded data. In principle, it is also possible to estimatethe
covariance matrixROut in the same manner asRROI, i.e., using
a purely model-based approach, and to compute the desired
spatial filter directly from (3). However, if the Beamformeris
adapted to the recorded data, then the attenuation of sources
focuses on regions of the brain outside the ROI that interfere
most with sources inside the ROI. In this way, the Beamformer
is adapted to the subject- and task-specific current distribution
within the brain.

Second, it is assumed that the EEG is stationary, implying
that the covariance matrices of sources within and outside the
ROI do not change over time. There is evidence, however,
that EEG displays non-stationary behavior [18]. While this
is neglected in the derivation of the Beamformer, the non-
stationary nature of EEG signals can be taken into account
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by updating the EEG covariance matrixRx in certain inter-
vals, and computing a new spatial filter using the updated
covariance matrix. In this way, a quasi-static Beamformer can
be realized. The performance of such an update scheme is
investigated in Section III.

Third, the source covariance matrixRp is assumed to equal
the identity matrix. This implies that all EEG sources within
the ROI are uncorrelated and of equal strength. This surely
constitutes an unrealistic assumption. However, in absence of
any knowledge on the actual source covariance matrix for a
given dataset this is the most simple prior. It should be noted,
however, that the absolute strength of sources within the ROI
is irrelevant, since any scaling ofRp is absorbed into the
eigenvalues in (12) and thus has no influence on the obtained
Beamformer.

Finally, it should be emphasized that any model of EEG
volume conduction can be used to compute the leadfield matrix
in (12). For reasons of simplicity, only a four-shell spherical
headmodel is considered in this study. It can be expected that
more realistic models, such as boundary element- or finite
element models (BEM/FEM) [1], also lead to more accurate
Beamformers.

III. E XPERIMENTAL RESULTS

In this section, spatial filtering by Beamforming is compared
with CSP and Laplacian spatial filtering on experimental
data from a two-class motor-imagery paradigm. Two different
Beamforming schemes are investigated, termedstatic- and
block-adaptiveBeamforming. CSP and Laplacian spatial fil-
tering are chosen for comparison with Beamforming due to
their excellent performance in motor imagery paradigms and
popularity in the BCI-community. Furthermore, preliminary
results from a study with real-time feedback are presented.

A. Experimental paradigm

The experimental paradigm adopted in this study was as
follows. Each subject was seated in a dimly lit and shielded
room, approximately two meters in front of a silver screen. A
trial started with the central display of a white fixation cross.
After three seconds, a white arrow was superimposed on the
fixation cross, either pointing to the left or the right. Subjects
were instructed to perform haptic motor imagery of the left or
the right hand during display of the arrow, as indicated by the
direction of the arrow. After another seven seconds the arrow
was removed, indicating the end of the trial and start of the
next trial. While subjects were explicitly instructed to perform
haptic motor imagery with the specified hand, i.e., to imagine
feeling instead of visualizing how their hands moved, the exact
choice of which type of imaginary movement, i.e., moving
the fingers up and down, gripping an object, etc., was left
unspecified. A total of 150 trials per condition were carriedout
by each subject, with trials presented in pseudo-randomized
order. Please note that in the employed experimental paradigm
subjects were not free to choose when to initiate a certain
motor imagination. Hence, the present study is restricted to
synchronous BCIs.

B. Experimental data

Ten healthy subjects (S1-S10) participated in the experi-
mental evaluation. Of these two were female, eight were right
handed, and their average age was 25.6 years with a standard
deviation of 2.5 years. Subject S3 had already participated
twice in a BCI experiment, while all other subjects were naive
to BCIs. EEG was recorded atM = 128 electrodes placed
according to the extended 10-20 system. Data was recorded
at 500 Hz with electrode Cz as reference. Four BrainAmp
amplifiers were used for this purpose, using a temporal analog
high-pass filter with a time constant of 10 s. The data was
re-referenced to common average reference offline. Electrode
impedances were below10 kΩ for all electrodes and subjects
at the beginning of each recording session. No trials were
rejected and no artifact correction was performed. For each
subject, the locations of the 128 electrodes were measured in
three dimensions using a Zebris ultrasound tracking system
and stored for further offline analysis.

After the recording sessions, the recorded EEG of each
subject was visually inspected for eye blinks, movement arti-
facts, and artifacts caused by interference of electric devices
by an experienced EEG user. This was not done to reject
artifactual trials, but rather to assess the percentage of trials
contaminated by artifacts. The percentage of trials for each
subject determined to contain substantial amounts of artifacts
during the actual motor imagery phase are summarized in
Tab. I. Please note that while manual labeling of artifactual
trials by an experienced EEG user is a subjective measure,
we believe this to constitute a more sensitive measure than an
automatic identification of artifactual trials. The recorded EEG
data and trials marked as artifactual can be made available
upon request. As can be seen from Tab. I, subjects S3 and S4
displayed very few artifactual trials (below 10%), subjects S6-
S9 displayed a moderate amount of artifactual trials (between
10% and 20%), and subjects S1, S2, S5, and S10 showed a
large amount of artifactual trials (above 20% and up to 74%).
Subsequently, subjects S3 and S4 will be referred to as clean
subjects, subjects S6-S9 as moderate subjects, and subjects S1,
S2, S5, and S10 as noisy subjects.

C. Evaluation procedure

To evaluate the performance of the different algorithms for
spatial filtering as a function of the amount of available train-
ing data a bootstrapping procedure was employed. For each
subject,n trials from each class were drawn randomly from the
recorded data and used as the training set, while the remaining
trials served as the test set. Then, spatial filtering, feature
computation, and classification were performed as described
below. For each size of the training set this procedure was
repeated ten times in order to obtain a sensible estimate of the
classification accuracy. The size of the training set was varied
from n = 10 to n = 100 trials per class in steps of ten trials.

Furthermore, two different time windows were investigated
for all spatial filter- and feature computations in order to
assess the influence of different trial length on performance.
The first time window, subsequently termed the long time
window, ranged from 3.5 - 10 s within each trial, i.e., 500
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TABLE I
PERCENTAGE OF TRIALS CONTAMINATED BY ARTIFACTS.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
23.7% 55.3% 5.0% 6.3% 23.3% 14.3% 14.6% 11.33% 15.0% 74.0%

ms after presentation of the instruction until the end of the
trial. The second time window, subsequently termed the short
time window, ranged from 3.5 - 6 s within each trial. Please
note that the length of the short time window corresponds
to what is suggested for CSP in [3]. Time windows were
chosen to start 500 ms after visual presentation of the motor
imagery instruction because subjects require several hundred
milliseconds to initiate motor imagery of the specified hand.
This is reflected in ERD/ERS onset roughly 500 ms after
presentation of the instruction [19].

1) Spatial filtering by CSP:Spatial filtering by CSP was
carried out with the parameters proposed in [3]. First, the
recorded EEG data was bandpass-filtered between 7 and 30 Hz
using a sixth-order Butterworth filter. Then, class-conditional
covariance matrices were computed using data in the specified
time window of the training set only. CSP spatial filters were
computed by solving the associated generalized eigenvalue
problem with diagonal loading to increase numerical stability.
The obtained spatial filters with the three largest/smallest
eigenvalues were then combined in the spatial filtering matrix
WCSP∈ R

M×6.

2) Laplacian spatial filtering:For Laplacian spatial filter-
ing, the large Laplacian spatial filter as described in [14]
was employed. Specifically, electrodes C3/C4, situated over
the left/right motor cortex, were chosen as the filter centers,
and the four second closest electrodes to C3/C4 were used
to compute the surface Laplacian, thereby forming the spatial
filtering matrix WLP ∈ R

M×2.

3) Spatial filtering by static Beamforming:In static Beam-
forming, Beamformers are computed once using a set of
(unlabeled) training data. The Beamformers are then applied
to new data, i.e., the test set, without further update. Static
Beamformers were computed here by first highpass-filtering
the recorded EEG with 0.5 Hz cut-off frequency using a sixth-
order Butterworth filter in order to remove baseline drifts.
The EEG covariance matrixRx was then computed using the
temporally filtered data of all trials in the training set andthe
specified time window. In order to direct two Beamformers at
the left and right motor cortex respectively, two sphericalROIs
of 1 cm radius located 1.9 cm radially below electrodes C3
and C4 were chosen. The associated leadfield matricesLC3

andLC4 were computed by placing radially oriented dipoles
onto an equidistant grid of 2 mm grid distance within each
of the ROIs, and calculating the projection strength to each
of the M = 128 electrodes using a four-shell spherical head
model [22]. Note that for each subject the measured electrode
locations were radially projected onto the outermost shellof
the employed head model. Assuming a unit source covariance
matrixRp, the two desired Beamformers were then determined
by computing the eigenvector with the largest eigenvalue of
(12) for each of the two leadfield matricesLC3 andLC4. Again,
diagonal loading was used in the eigenvector computation to

improve numerical stability. The two eigenvectors were finally
combined to form the spatial filtering matrixWSBF ∈ R

M×2.
4) Spatial filtering by block-adaptive Beamforming:In

block-adaptive Beamforming, Beamformers are not computed
from a fixed set of EEG data, but rather recomputed for
each trial. In this way, Beamformers can be adapted to non-
stationarities in the recorded EEG. Here, the parameters em-
ployed for block-adaptive Beamforming were chosen identical
to those used in static Beamforming as described above.
For each trial, a separate EEG covariance matrix was then
estimated using the (unlabeled) data from the specified time
window, and a trial specific spatial filtering matrixWBBF ∈

R
M×2 was computed as described above.
5) Feature computation & classification:For all spatial fil-

tering methods described above the same feature computation
and classification procedure was employed.

First, the spatial filtering matrixW(.) was used to compute
the spatially filtered EEG signaly(t) = W T

(.)x(t). Please note
that herex(t) refers to the raw EEG data, i.e., the original
EEG recordings without previous temporal filtering. For each
trial, a feature vector was then computed by first bandpass-
filtering each component of the spatially filtered EEG signal
in 20 frequency bands of 2 Hz width ranging from 1 to 41 Hz
(again using sixth-order Butterworth filters), and afterwards
computing the log-bandpower in each frequency band using
the specified time window. This resulted in a feature vector of
120 dimensions for CSP, and of 40 dimensions for Laplacian
filtering, static Beamforming, and block-adaptive Beamform-
ing.

For actual classification, logistic regression withl1-
regularization as described in [12] was employed. This lin-
ear classifier was chosen for two reasons. First, non-linear
classifiers do not significantly improve classification accuracy
in non-invasive BCIs based on bandpower features while
needlessly increasing complexity [7], [15]. Second, only some
frequency bands provide information on the user’s intention
in motor imagery paradigms, and these frequency bands
vary across subjects [19]. It thus can be expected that most
dimensions of the feature vector are irrelevant, but it is
unknown which ones are relevant for a certain subject. For
this class of classification problems, i.e., a high-dimensional
feature space with mostly irrelevant features, it is provedin
[16] that logistic regression withl1-regularization possesses
a sample complexity that only grows logarithmically in the
number of irrelevant features. Rotationally invariant classifiers,
such as support vector machines, have a worst case sample
complexity that grows linearly in the number of irrelevant
features. Hence, for this class of problems logistic regression
with l1-regularization can be expected to display a faster
convergence (in terms of the required amount of training data)
to its minimum error than other state-of-the-art classification
algorithms. Note that logistic regression usingl1-regularization
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leads to sparse weight vectors, and thus can also be understood
as a feature selection procedure. For each subject, training set,
and algorithm used for spatial filtering, thel1-regularization
constant was determined by five-fold cross-validation on the
training set. This regularization constant was then used totrain
another classifier using all features from the training set,and
the resulting logistic regression model was used to classify the
trials in the test set.

D. Results

The obtained classification results are shown in Tab. II and
Fig. 1 for the long time window and in Tab. III and Fig. 2 for
the short time window, both times as a function of the number
of training trials per condition. The mean performance of all
subjects across all training set sizes is shown in Tab. IV.

In general, the obtained classification results differ substan-
tially between subjects. Subjects S3 and S4 achieve classifica-
tion accuracies close to 100% for all spatial filtering methods,
while subjects S1 and S7 do not perform substantially above
chance level for any type of spatial filtering. The performance
of the remaining six subjects ranges from mediocre to rather
well, with substantial differences due to the algorithm used
for spatial filtering. It is noteworthy that the capability of
subjects to operate a BCI appears not to be determined by
the percentage of artifactual trials. While subjects S3 and S4
with the lowest percentage of artifactual trials (cf. Tab. I)
also perform best, subject S2 achieves very high classification
accuracies using unsupervised methods in spite of more than
50% of all trials containing substantial amounts of artifacts.
Conversely, subject S7 does not achieve classification accu-
racies substantially above chance in spite of only a moderate
amount of artifactual trials (14.6%). Regarding the different
time windows used in the computation of the spatial filters and
the classification procedure, it is noteworthy that on average
all methods for spatial filtering perform better using the long
time window (cf. Tab. IV). Note, however, that substantial
subject-specific differences can be observed for spatial filtering
by CSP. Specifically, the short time window performs better
than the long time window on subject S2 and S9 when
using CSP. On average, however, this is counterbalanced by
superior performance of the other subjects using the long time
window. Hence, if not stated differently, classification results
will subsequently refer to the long time window.

Regarding a comparison of the algorithms used for spatial
filtering, different algorithms perform best for differentsub-
jects. Averaging across all training set sizes, best performance
across both time windows is achieved for three subjects by
using CSP (S1, S6 and S9), for four subjects by using static
Beamforming (S3, S5, S7, and S10), for two subjects using
block-adaptive Beamforming (S4 and S8), and for one subject
using Laplacian spatial filtering (S2). If only the maximum
training set size is considered, five subjects perform best using
CSP (S1, S3, S4, S6, and S9), three subjects perform best
using static Beamforming (S2, S5, and S7), and two subjects
perform best using block-adaptive Beamforming (S8 and S10).
It should be noted, however, that differences due to different
spatial filtering within subjects range from minor (e.g., in
subjects S3 and S4) to quite substantial (e.g., in subject S10).

Regarding the performance of spatial filtering for different
types of subjects (cf. Sec. III-B and Tab. I), considerable
differences can be observed (Tab. IV). For noisy subjects,
static Beamforming outperforms CSP by on average 11.5%
and Laplacian spatial filtering by on average 5.5%. Static-
and block-adaptive Beamforming perform similar, with a slight
advantage for static Beamforming of 2%. This observation is
also valid but less pronounced for moderate subjects, for which
static Beamforming outperforms CSP and Laplacian spatial
filtering by 5.5% and 2.2%, respectively. For clean subjects,
no substantial differences between the different algorithms
used for spatial filtering can be observed, i.e., differences are
below 2%. If only the maximum training set size is considered,
spatial filtering by CSP slightly outperforms the other methods
on the clean subjects, but differences again remain below 2%.
Finally, averaged across all subjects and training set sizes static
Beamforming outperforms Laplacian spatial filtering by 3.6%,
which in turn outperforms CSP by 3%. Note, however, that the
average performance across all subjects is biased by a larger
number of noisy than clean subjects.

In summary, the performance of different spatial filters is
strongly subject-specific and varies with the percentage of
trials containing substantial amounts of artifacts. While for
virtually artifact-free EEG recordings CSP performs slightly
better than the other approaches, Beamforming performs sub-
stantially better than CSP and Laplacian spatial filtering on
EEG recordings heavily contaminated by artifacts. On average,
no substantial differences can be observed between static-and
block-adaptive Beamforming.

E. Spatial filters and spectral band weighting

Fig. 3 illustrates how the subject-specific performance of the
spatial filtering algorithms is reflected in the weights assigned
to each spectral band in the classification procedure.

As can be seen in this figure, the classification procedure
generally concentrates on theµ- and on theβ-band (roughly
around 12 Hz and from 25-35 Hz, respectively), which is
in agreement with previous reports on motor imagery [19].
There are, however, spatial filter-specific differences. While
for spatial filtering by CSP the classification procedure as-
signs strongest weights to theµ-band, both Beamforming and
Laplacian spatial filtering appear to favor theβ-band. This
observation is particularly pronounced for subject S3. Note,
however, that in spite of a focus on different spectral bandsall
spatial filters achieve excellent classification results for subject
S3. As of now, we can not provide an explanation for this
observation.

Typical spatial filters focusing on the left motor cortex
computed for subjects S3, S6 and S8 (using the long time
window) are shown in Fig. 4. These subjects are chosen
since S3 shows excellent performance for all spatial filters,
S6 performs best when using CSP, and S8 performs best when
using Beamforming. Interestingly, spatial filters computed for
subject S3 differ noticeably in spite of similar classification
performance. While a typical spatial filter obtained by CSP
shows a dipolar pattern with an additional focus on the
contralateral hemisphere, spatial filters obtained by Beamform-
ing display a center-surround pattern that is similar to the
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Fig. 1. Classification accuracies in percent for subjects S1-S10 using thelong time window as a function of the number of training trials per condition for
spatial filtering by Common Spatial Patterns (CSP), static Beamforming (SBF), block-adaptive Beamforming (BBF), and Laplacian spatial filtering (LP).
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Fig. 2. Classification accuracies in percent for subjects S1-S10 using theshort time window as a function of the number of training trials per condition for
spatial filtering by Common Spatial Patterns (CSP), static Beamforming (SBF), block-adaptive Beamforming (BBF), and Laplacian spatial filtering (LP).

Laplacian spatial filter. This is in agreement with the previous
observation that in subject S3 Beamforming and LP favor
similar spectral weighting in theβ-band, while CSP appears to
lead to a focus on theµ-band (cf. Fig. 3). Note, however, that
spatial filters obtained by Beamforming appear more complex
than the corresponding Laplacian spatial filter, which is also
reflected in a higher classification accuracy. Further note that
for subject S3 all spatial filters focus on an area directly
underneath electrode C3. This is different for subject S6, for
which CSP has a slightly more central and parietal focus than
the other spatial filters. This illustrates an advantage of the
supervised CSP approach, i.e., the capability to automatically
determine the region of the brain most relevant for inferring
the subject’s intention. In subject S6, Beamforming and LP
probably slightly miss the most relevant ROI, resulting in
a slight decrease in classification accuracy in comparison to

CSP. However, the last row of Fig. 4, showing spatial filters
computed for subject S8, illustrates that in some subjects
CSP fails to construct sensible spatial filters. Here, CSP
does not compute spatial filters with a strong focus, resulting
in a classification accuracy only slightly above chance. In
comparison, both Beamforming approaches compute spatial
filters with a strong focus on and close to electrode C3 that
appear similar in shape to the spatial filter computed by CSP
for subject S3. Accordingly, the Beamforming approaches
achieve a classification accuracy close to 80% in subject S8.
Finally, note that subject S8 displayed only a moderate amount
of artifactual trials, indicating that contamination by artifacts
is not the only cause for the failure of CSP to compute sensible
spatial filters in some subjects.
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TABLE II
MEAN CLASSIFICATION ACCURACY FOR THELONG TIME WINDOW IN PERCENT AS A FUNCTION OF THE NUMBER OF TRAININGTRIALS PER CONDITION

FOR SPATIAL FILTERING (SF) BY COMMON SPATIAL PATTERNS (CSP),STATIC BEAMFORMING (SBF),BLOCK-ADAPTIVE BEAMFORMING (BBF), AND

LAPLACIAN SPATIAL FILTERING (LP).

Subject SF
Number of training trials per condition

Mean
10 20 30 40 50 60 70 80 90 100

S1
CSP 52.4 56.0 55.8 55.7 55.5 57.7 60.4 58.6 58.2 59.5 57.0
SBF 52.2 53.4 55.5 57.1 57.7 57.0 58.8 59.6 58.8 59.5 57.0
BBF 50.3 52.0 53.9 52.7 54.2 55.7 55.2 57.5 58.8 57.6 54.8
LP 52.1 53.3 52.1 53.4 55.6 55.1 52.9 57.2 55.0 56.7 54.3

S2
CSP 59.7 64.2 67.6 64.6 66.3 62.9 70.3 65.1 69.8 71.6 66.2
SBF 83.1 88.6 90.7 92.5 92.2 93.7 91.1 93.6 94.2 95.2 91.5
BBF 82.4 85.7 89.0 89.9 89.8 90.6 92.4 92.4 93.0 93.4 89.9
LP 83.7 89.4 92.0 92.8 93.7 93.4 93.5 93.4 93.2 94.1 91.9

S3
CSP 78.6 92.3 96.0 96.7 98.1 97.9 98.1 98.9 98.2 98.9 95.4
SBF 94.7 95.6 96.4 96.5 96.5 96.5 96.4 97.6 96.9 97.2 96.4
BBF 95.6 94.9 96.4 96.2 95.1 96.8 96.9 97.1 97.4 97.0 96.4
LP 89.2 92.1 93.2 91.7 93.1 92.7 93.1 94.5 93.6 94.8 92.8

S4
CSP 85.2 93.3 97.3 97.4 97.9 99.1 97.9 98.8 98.8 98.3 96.4
SBF 95.0 96.3 96.0 96.0 96.8 97.2 96.1 97.1 97.8 97.2 96.6
BBF 94.1 97.0 97.5 96.5 98.4 98.7 97.7 97.8 98.6 98.3 97.5
LP 90.2 94.0 94.8 94.4 96.2 96.3 95.7 94.6 96.0 96.0 94.8

S5
CSP 76.7 75.5 82.3 78.3 79.8 86.5 88.4 89.8 89.9 88.3 83.6
SBF 85.1 90.1 92.0 91.6 93.2 92.2 92.4 93.6 92.0 92.2 91.4
BBF 82.4 84.8 87.5 88.6 89.5 89.3 89.7 90.3 88.0 89.8 88.0
LP 81.4 87.3 86.8 89.4 90.4 90.2 90.2 90.1 89.2 88.3 88.3

S6
CSP 70.0 81.6 89.4 90.2 92.0 91.7 92.9 91.9 93.0 91.7 88.4
SBF 75.1 85.0 86.2 89.1 89.4 89.7 89.9 90.0 89.5 88.2 87.2
BBF 64.6 74.2 79.4 81.2 80.4 82.3 81.5 81.6 80.8 82.1 78.8
LP 71.4 78.6 79.2 81.8 83.8 81.3 82.4 81.8 85.2 84.8 81.0

S7
CSP 50.1 51.2 51.3 50.5 51.7 49.6 49.8 51.5 50.0 49.1 50.5
SBF 51.2 53.1 53.9 55.0 57.0 57.1 56.7 59.1 57.7 59.2 56.0
BBF 51.6 54.1 53.9 54.5 56.2 56.5 57.9 56.4 57.2 59.1 55.7
LP 50.0 53.7 54.3 54.4 56.5 52.8 55.9 54.6 57.0 55.2 54.4

S8
CSP 53.9 52.8 55.9 60.5 59.7 60.0 56.8 54.9 51.8 57.0 56.3
SBF 56.9 69.2 72.6 76.0 75.4 76.9 76.1 78.1 76.1 75.5 73.3
BBF 63.7 70.8 73.5 74.8 75.8 77.0 77.3 77.0 79.3 78.8 74.8
LP 57.9 65.4 65.2 68.5 70.5 69.1 69.6 71.9 70.4 70.5 67.9

S9
CSP 57.0 61.7 66.9 69.8 69.4 63.4 63.4 67.1 72.4 67.1 65.8
SBF 56.0 59.8 61.9 63.7 62.4 65.5 64.8 67.2 64.4 65.3 63.1
BBF 57.5 62.6 63.5 66.5 68.4 69.2 68.7 68.4 67.4 68.0 66.0
LP 60.9 64.2 66.5 67.2 68.5 67.6 67.9 70.9 69.1 68.8 67.2

S10
CSP 57.0 62.7 67.7 73.5 74.6 74.2 75.2 77.1 79.4 79.4 72.1
SBF 77.8 79.7 84.2 84.6 87.1 86.7 87.7 87.7 86.4 88.1 85.0
BBF 74.4 80.6 83.0 84.0 86.7 85.5 86.8 87.3 85.2 89.0 84.2
LP 55.8 63.0 67.8 69.4 70.2 71.2 71.2 70.9 71.2 73.5 68.4
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Fig. 3. Normalized mean absolute weights of different spectral bands across all training set sizes and both time windows as determined by thel1-regularized
logistic regression classifier for Common Spatial Patterns (CSP), static Beamforming (SBF), block-adaptive Beamforming (BBF), and Laplacian spatial filtering
(LP).
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TABLE III
MEAN CLASSIFICATION ACCURACY FOR THESHORT TIME WINDOW IN PERCENT AS A FUNCTION OF THE NUMBER OF TRAININGTRIALS PER CONDITION

FOR SPATIAL FILTERING (SF) BY COMMON SPATIAL PATTERNS (CSP),STATIC BEAMFORMING (SBF),BLOCK-ADAPTIVE BEAMFORMING (BBF), AND

LAPLACIAN SPATIAL FILTERING (LP).

Subject SF
Number of training trials per condition

Mean
10 20 30 40 50 60 70 80 90 100

S1
CSP 50.8 50.6 54.4 52.3 52.5 54.2 50.8 55.7 53.8 54.3 52.9
SBF 50.0 53.8 51.0 53.4 54.8 53.8 53.3 54.6 54.2 54.3 53.3
BBF 51.0 50.1 51.7 51.8 54.5 52.4 53.7 56.2 52.2 54.6 52.8
LP 50.9 54.1 54.4 56.1 55.4 57.3 54.9 58.3 57.0 55.7 55.4

S2
CSP 63.1 69.1 74.8 76.6 79.0 80.5 86.1 85.4 86.6 88.7 79.0
SBF 84.5 90.5 89.2 92.1 90.9 92.0 91.6 91.6 93.8 93.7 91.0
BBF 82.0 85.0 87.3 87.9 88.9 89.4 90.0 90.8 91.8 91.6 88.5
LP 88.5 90.5 92.4 92.5 92.4 93.2 92.1 92.9 94.8 94.0 92.3

S3
CSP 63.4 76.2 86.0 89.2 92.1 93.7 94.6 94.8 95.6 95.4 88.1
SBF 86.7 90.5 92.6 93.6 93.9 94.3 94.4 94.8 94.6 94.4 93.0
BBF 88.4 90.0 93.3 93.1 93.5 93.2 93.4 94.5 94.2 93.9 92.7
LP 82.3 83.0 85.8 87.6 89.6 88.8 89.4 91.9 89.6 88.2 87.6

S4
CSP 68.4 90.3 91.0 94.1 95.8 96.1 95.8 96.1 96.7 97.4 92.2
SBF 86.6 91.8 91.9 93.0 93.9 94.3 94.1 92.7 94.1 94.1 92.6
BBF 84.3 91.6 92.2 92.8 93.2 93.6 93.4 93.2 94.3 94.6 92.3
LP 86.1 90.4 91.2 91.4 91.3 91.8 92.0 90.6 91.7 92.2 90.9

S5
CSP 65.6 72.2 76.5 71.8 78.0 81.4 81.8 83.4 87.1 81.6 77.9
SBF 75.2 82.8 86.7 86.5 86.5 88.9 89.0 89.3 89.4 88.9 86.3
BBF 72.6 81.5 81.7 84.0 86.0 86.1 87.1 87.1 84.7 86.9 83.8
LP 73.1 81.8 83.2 83.0 83.3 83.1 83.9 84.9 82.2 82.9 82.1

S6
CSP 62.7 64.5 76.9 79.6 80.7 83.2 85.8 85.3 86.8 85.1 79.0
SBF 71.2 78.8 80.7 82.1 83.3 83.3 82.3 83.5 83.7 83.8 81.3
BBF 59.5 72.0 74.8 73.6 80.7 79.1 80.6 80.6 82.8 82.4 76.6
LP 63.3 70.5 74.0 75.3 74.8 75.3 74.5 75.1 76.5 74.0 73.3

S7
CSP 49.6 51.2 50.9 50.2 50.5 53.0 49.6 50.8 52.0 49.8 50.8
SBF 50.9 51.5 51.2 54.1 53.5 54.7 51.6 52.8 53.2 53.5 52.7
BBF 51.1 51.5 53.2 53.4 51.2 53.7 54.1 52.8 54.6 54.0 53.0
LP 50.7 52.7 52.6 54.4 57.1 57.1 57.2 56.9 56.0 56.1 55.1

S8
CSP 53.0 53.0 58.2 61.0 58.8 60.9 57.2 57.1 58.1 63.5 58.1
SBF 62.0 72.1 70.7 72.5 75.3 75.6 74.4 77.3 76.9 76.9 73.4
BBF 58.9 63.2 65.5 67.0 69.0 71.6 68.0 69.9 70.5 69.7 67.3
LP 54.4 59.3 59.6 59.6 61.7 62.1 61.8 62.9 63.5 63.7 60.9

S9
CSP 55.3 61.4 61.8 68.5 72.1 70.9 73.6 74.5 75.8 76.6 69.0
SBF 59.6 64.2 62.8 65.8 67.8 68.4 67.5 70.3 69.4 69.9 66.6
BBF 60.5 63.3 64.7 65.9 68.2 68.3 67.1 67.4 69.3 68.3 66.3
LP 58.1 62.4 66.2 68.1 68.1 69.9 68.0 70.6 70.8 70.6 67.3

S10
CSP 54.7 61.5 60.2 68.9 69.8 69.1 72.5 73.4 76.4 76.0 68.2
SBF 67.7 73.0 79.3 77.2 77.3 79.1 81.2 81.3 80.3 81.4 77.8
BBF 64.4 72.9 77.2 78.2 79.5 80.2 79.9 80.1 79.1 81.5 77.3
LP 56.3 61.8 63.1 64.4 66.0 66.7 64.3 65.8 67.6 68.1 64.4

TABLE IV
MEAN CLASSIFICATION ACCURACY IN PERCENT FOR DIFFERENT SUBJECT TYPES(USING THE LONG/SHORT TIME WINDOW) ACROSS ALL TRAINING SET

SIZES.

Spatial filter
Subjects

Mean across subjects
Noisy Moderate Clean

CSP (long/short) 69.7 / 69.5 65.3 / 64.2 95.9 / 90.1 72.3 / 71.5
SBF (long/short) 81.2 / 77.1 69.9 / 68.5 96.5 / 92.8 79.8 / 76.8
BBF (long/short) 79.2 / 75.6 68.9 / 65.8 96.9 / 92.5 78.6 / 75.1
LP (long/short) 75.8 / 73.6 67.6 / 64.1 93.8 / 89.3 76.1 / 72.9

F. Beamforming with realtime feedback

To establish the feasibility of Beamforming for BCIs with
real-time feedback, the experimental setup was adapted in the
following way. First, a certain number of training trials were
recorded using the same experimental paradigm as described
in Section III-A. This training data set was then used to
compute two static Beamformers and train a logistic regres-
sion classifier withl1-regularization as described above. After
training, real-time feedback was provided to the BCI-user.
This was carried out by sending the recorded EEG data via
TCP/IP to Matlab/Simulink running at 500 Hz. The two static
Beamformers were then applied to every new data sample, and
the resulting two extracted EEG components were bandpass-
filtered as in the offline evaluation procedure. The variances-
of the temporally and spatially filtered time series within a

trial were then calculated recursively at every sample step(i.e.,
not using a sliding-window but in an accumulative manner),
and the current estimate was fed into the previously trained
logistic regression model. The output of the model at each
sample point, ranging from zero to one, was then presented
to the subject by drawing a white filled square on the screen.
The output of the model was linearly mapped to the horizontal
position of the square, with an output of zero mapped to
the left border and an output of one mapped to the right
border of the screen. The horizontal position of the square
thus informed the BCI-user of the certainty of the classifier
about her/his intention (with the left/right border of the screen
indicating 100% certainty of an imaginary movement of the
left/right hand). To further motivate the subject, two white
boxes were drawn at the left and right borders of the screen
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Fig. 4. Set of typical spatial filters focusing on left motor cortex obtained by Common Spatial Patterns (CSP), static Beamforming (SBF), block-adaptive
Beamforming (SBF), and Laplacian spatial filtering (LP) for training set size of 100 trials per condition and the long time window. Plotted with [6]. Colors
ranging from blue to red indicate normalized electrode weights.

into which the subject had to move the white square. Also,
the color of the centrally displayed arrow was set to green or
red, depending on whether the output of the classifier lead to
a correct decision or an error. Each trial ended after a preset
time, or if a certain threshold of certainty of the classifier
was achieved. This threshold criterion was only checked after
a certain minimum time into each trial to ensure sensible
estimates of the variances of the EEG components. Finally,
each trial began with a pause of 3 s.

Due to the excellent performance in the offline experiment,
subject S4 was asked to perform again in the online
experiment. Twenty-five trials per condition were recorded
as training data, corresponding to a training time of eight
minutes and twenty seconds. For the online experiment the
regularization constant used to train the logistic regression
model was not determined by cross-validation, but rather
heuristically tuned on the offline data sets to a generic value
found to work well across subjects. Then, five blocks of twenty
trials per condition were carried out with feedback provided,
with a break of approximately two minutes between each
block. The obtained classification results are shown in Tab.V,
along with the minimum and maximum trial lengths and the
thresholds for termination of a trial. The mean classification
accuracy across all blocks was 90.0%, which is within the
range expected due to the classification accuracy obtained
by subject S4 in the offline experiment using the static
Beamforming approach with the same amount of training
data (cf. Tab. II). A video of this experiment can be watched
at http://www.lsr.ei.tum.de/research/videos/biomedical-
engineering/one-dimensional-cursor-control-by-a-non-
invasive-brain-computer-interface/.

IV. D ISCUSSION

In this article, an alternative to supervised algorithms for
spatial filtering in the context of non-invasive BCIs was pre-
sented. Based on the principle of Beamforming, spatial filters
were constructed that extract EEG sources originating within
specific ROIs within the brain. In this way, neuro-physiological
a-priori knowledge can be utilized to optimally attenuate EEG
sources not providing information on a subject’s intention
for a given experimental paradigm. The main advantage of
Beamforming is its unsupervised nature, rendering it robust
against artifactual EEG components.

The proposed algorithm was experimentally validated in a
two-class motor imagery paradigm, and it was shown that
spatial filtering by Beamforming substantially outperforms
spatial filtering by CSP if the recorded EEG is strongly con-
taminated by artifactual components. On virtually artifact-free
data sets CSP performed slightly better than Beamforming.
Furthermore, Beamforming could be shown to consistently
outperform Laplacian spatial filtering. Finally, the feasibility of
constructing BCIs with real-time feedback using Beamformers
was demonstrated.

It should be noted that in this study only a two-class motor-
imagery paradigm has been considered. In principle, spatial fil-
tering via Beamforming can be easily extended to multi-class
paradigms. For example, in motor-imagery paradigms using
multiple body parts several Beamformers can be constructed,
with the ROIs focused on those regions of the motor cortex
representing the specific parts of the body. However, it remains
to be experimentally established if Beamforming also displays
the advantageous properties observed here if it is applied to
ROIs buried deep within the cortex, e.g., if motor imagery of
the feet is utilized.

Regarding a fair comparison of CSP and Beamforming, it
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TABLE V
RESULTS OF THE ONLINE EXPERIMENT FOR SUBJECTS4.

Block # Min trial length Max trial length Thresholds Classification accuracy
1 9.99 s 10 s [0.1 0.9] 92.5%
2 9.99 s 10 s [0.1 0.9] 87.5%
3 6 s 10 s [0.1 0.9] 87.5%
4 6 s 30 s [0.1 0.9] 92.5%
5 6 s 30 s [0.1 0.9] 90.0%

should be further noted that both algorithms can be improved
in several ways. Instead of automatically selecting a set of
spatial filters obtained by CSP, spatial filters can also be
visually inspected and selected according to prior knowledge
on meaningful filter topographies. While this can be expected
to increase the robustness of CSP, it requires expert supervision
and thus limits the routine applicability of BCIs. Further note
that several heuristics exist to finetune CSP [3]. In the case
of Beamforming, the probably most relevant factor affecting
classification accuracy is a misplaced ROI. In this study, ROIs
were chosen rather arbitrarily at locations assumed to include
the left and right motor cortex. It is expected that classification
performance can be further improved by a subject-specific
adaptation of the location and size of the ROIs using cross-
validation on the training set. Furthermore, it would be inter-
esting to determine optimal generic, i.e., subject-independent,
ROIs for a given experimental paradigm. For other factors that
affect Beamformer performance and that could be improved
on please also confer Section II-C.

In summary, we do not wish to argue that either CSP or
Beamforming perform superior in general, but rather see both
methods as complimentary approaches to spatial filtering in
non-invasive BCIs. While CSP probably provides theoretically
optimal spatial filters [9], Beamforming can be particularly
useful if CSP fails to compute sensible spatial filters - whether
this is due to subjects not being able to induce strong mod-
ulations of their µ-rhythm, a strong contamination of the
recorded EEG by artifactual components, or too few training
trials being available. As such, we believe that Beamforming
might prove to be particularly useful when working with
subjects in late stages of ALS, since here experiments usually
have to be conducted in clinical environments under non-
optimal conditions. Finally, we would like to point out that
the observation of CSP and Beamforming favoring different
spectral bands might indicate that both approaches extract
(at least partially) independent information on the subject’s
intention. As such, a combination of CSP and Beamforming
might prove to be useful.
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