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Abstract—Spatial filtering constitutes an integral part of build-
ing EEG-based Brain-Computer Interfaces (BCIs). Algorithms
frequently used for spatial filtering, such as Common Spatial
Patterns (CSP) and Independent Component Analysis (ICA),
require labeled training data for identifying filters that provide
information on a subject’s intention, which renders these algo-
rithms susceptible to overfitting on artifactual EEG components.
In this study, Beamforming is employed to construct spatial
filters that extract EEG sources originating within pre-defined
regions of interest (ROIs) within the brain. In this way, neuro-
physiological knowledge on which brain regions are relevant for
a certain experimental paradigm can be utilized to construct
unsupervised spatial filters that are robust against artifactual
EEG components. Beamforming is experimentally compared with
CSP and Laplacian spatial filtering in a two-class motor-imagery
paradigm. It is demonstrated that Beamforming outperforms
CSP and Laplacian spatial filtering on noisy datasets, while
CSP and Beamforming perform almost equally well on datasets
with few artifactual trials. It is concluded that Beamforming
constitutes an alternative method for spatial filtering that might
be particularly useful for BCls used in clinical settings, i.e., in an
environment where artifact-free datasets are difficult to obtain

I. INTRODUCTION

N

measurements of brain activity. BCls thereby enable sthj

ON-INVASIVE Brain-Computer Interfaces (BCIs) are
devices that infer a subject’s intention from non-invasivi

most widely available. Accordingly, the work presentedhist
article focuses on EEG recordings. However, all resultsbean
adapted to MEG recordings with relative ease.

One of the largest obstacles to constructing powerful BCls
based on EEG is the low signal-to-noise-ratio (SNR) of EEG
recordings. The components of the EEG providing infornratio
on the user’s intention are usually heavily cloaked by ongoi
background activity of the brain, hindering an effectivéein
ence of the user’s intention. One commonly employed styateg
to improve the SNR is linear spatial filtering. Here, EEG
measurements from multiple sites on the scalp are linearly
combined in order to optimally attenuate EEG sources not
providing information on the user’s intention. Constrogti
good spatial filters however is a difficult problem, sincesit i
in general unknown which characteristics of the EEG provide
maximum information on the user’s intention, i.e., how the
user’s intention is encoded in the electric field of the bréin
is known, however, that subjects are capable of intentipnal
inducing changes in the power of spectral components of
the electric field of the brain. For example, motor imagery
of different limbs can be used to induce event related syn-
chronization/desynchronization (ERS/ERD) in those aias
the motor cortex representing the specific limbs (as revdewe
in [19]). As first demonstrated in [20], this can be used to

onstruct a non-invasive BCI. Most BCls based on EEG are
Eurrently based on motor imagery paradigms [13], which is

to Commuf"ca‘e W't.hOUt gtmzmg the per.|pheral_nervous-syalso the type of paradigm used in the experimental evaluatio
tem. This is of particular interest to subjects with damamge

the peripheral nervous system, e.g., caused by amyotrop f't %the work presented here. In this context, linear spatial
. S e ) iltérs ar nsider timal if they maximally atten t
lateral sclerosis (ALS) or brain stem stroke, for which narm s are considered optima ey maximally attenudte

SN . . . variance of those EEG sources that are not modulated by motor
communication is impaired or even impossible. A gener

) . : . S Tmagery.
introduction to research on non-invasive BCIs is given in O%eyof the the most successful algorithms for spatial
[24]. In principle, any non-invasive recording modality ofﬁIt

, o ering in non-invasive BCls based on motor imagery is
brain activity, such as electroencephalography (EEG) meag the Common Spatial Patterns (CSP) algorithm, introduced to

toencephalography (MEG), or functional magnetic reso@ang. BCl-community in [21]. CSP is a supervised algorithm

imaging (fMRI), can be used to construct a non-invasivg signed for two-class paradigms. It constructs lineatiapa

BCI. Of these modalities, EEG s the most affordable arﬁﬁers that maximize the ratio of class-conditional vaces
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of artifact is more pronounced in the EEG training data dghat a) optimally attenuate EEG sources which do not provide
one class than in the EEG data of the other class, the ratiformation on the subject’s intention, and b) are robustirasf
of class-conditional variances is maximized by extractimg artifactual EEG components due to their unsupervised aatur
artifactual EEG component that does not provide infornmatio In EEG/MEG analysis, spatial filters extracting sourcegiro
on the subject’s intention. Please note in the context of C&Prtain regions within the brain are commonly known as
overfitting should not be understood as necessarily ovaditt Beamformers (reviewed in [8]). In fact, the Beamforming ap-
on the zero-one loss function used for classification, biliera proach presented here is similar to the MaxSNR Beamformer
as overfitting on the CSP loss function of the ratio of classvell known in the area of array signal processing (cf. [23]).
conditional variances. However, to the best of the authors’ knowledge, this work is
Another popular approach to spatial filtering in non-invasi the first to apply the concept of Beamforming in the context
BCls is Independent Component Analysis (ICA) (see [5] faof non-invasive BCIs. Please note, however, that a prenyin
a general introduction to ICA and [4] for an introduction tosersion of this work has been presented in [11].
spatial filtering in BCls by ICA). ICA computes spatial filker ~ The structure of this article is as follows. In Section II-A,
in an unsupervised manner by decomposing the observed E86 notation used throughout this article is introducede Th
into statistically independent components (ICs). Howeafter Beamforming approach to linear spatial filtering is presdnt
computing the ICs it is necessary to identify those that jgi@v in Section 1I-B, and the properties of the obtained Beam#arm
maximum information on the subject’s intention. To the beste discussed in Section 1I-C. In Section Ill, experimental
of the authors’ knowledge this has only been demonstrategbults from a two-class motor imagery paradigm of ten
using labeled training data, which makes spatial filterizg thealthy subjects are presented. Classification resultsinsat
ICA susceptible to overfitting as well. with Beamforming, CSP, and Laplacian spatial filtering are
In general, supervised algorithms such as CSP and I@ampared, and the feasibility of BCls with real-time feetlba
perform well if the recorded EEG data is not contaminated Hyased on Beamforming is demonstrated. The article conglude
artifacts. For noisy datasets supervised methods tendctes fowith a discussion of the results in Section V.
on artifactual components, which often results in unsadisf
tory classification results. While this is not of primary cenc
in research environments where experiments can be carrRedNotation

out with healthy subjects under optimal conditions, EEGdat Throughout this article vectors are denoted by bold letters
recorded from patients in clinical environments are usualhnd matrices by capital letters. Accordingh(,t) c RM refers
heavily contaminated by artifacts, e.g., as caused byréecto one sample of EEG data recorded at tina M electrodes.
devices used for life-support or monitoring purposes or hythe time index is dropped is treated as a/-dimensional
medical care during the recording session. It is henceal@sir stationary random variable. A spatial filter is denotedusy

to develop algorithms for spatial filtering that perform WelRM  and the spatially filtered EEG data byt) = w'x(t) €

on noisy datasets, i.e., that are more robust againstatié#a R. Spatial covariance matrices are denotedry.
components of the EEG.

One way to render spatial filtering more robust againg. Spatial filtering by Beamforming
artifactual components is to focus on unsupervised methods, this section, a spatial filter is derived that optimally

that do not rely on labeled training data. In motor imagenyitenuates the variance of EEG sources outside a pre-defined
paradigms, it has been demonstrated that Laplacian spagigd| |n general, it is desirable to completely eliminate EEG
filtering substantially increases classification accuradi-  soyrces originating outside the ROI. This, however, is not
out being prone to overfitting [14]. Laplacian spatial fler hossible due to the ill-posed nature of the inverse problém o
however, assign weights to each electrode in a rather ad-hgeg |n EEG recordings, the continuous current distributio
manner which can not be regarded as optimal. Furthermojgihin the brain, that gives rise to the EEG, is mapped onto
in Laplacian spatial filtering only few electrodes are useq, finite number of measurement electrodes. This corresponds
thereby discarding potentially useful information re@ddat 4 3 mapping from an infinite to a finite dimensional space.
other locations on the scalp. _ Accordingly, estimating EEG sources originating in a derta

_In this article, a different approach to unsupervised spatiRo)| constitutes an underdetermined problem. The best one
filtering is proposed. In many experimental paradigms neurgan do is to find a spatial filter that in some sense optimally
physiological knowledge is available on which regions ofitenuates all sources outside the ROI. Since it is assugred h
the brain provide information on a subjects intention. FGfat only variance changes provide information on the slsje
example, it is well known that in motor imagery paradigmention, optimal attenuation is defined as maximizing the
EEG components originating in those areas of the motorxortgyis of variances of EEG sources originating inside and

representing the specific limbs provide information on thgsige the ROI. In mathematical terms, the goal is to comput
user’s intention [10], [19]. In this study, linear spatidtdis 5 spatially filtered EEG signal

are presented that utilize this a-priori knowledge by optlyn

Il. METHODS

*T
attenuating the variance of all EEG sources not originaiting y(t) = w* z(t) @)
chosen regions of interest (ROIs) within the brain. By clo®s ith
ROIs according to neuro-physiological a-priori knowledge x w' Rrojw
. . - . ) . w' = argmax | ———— (2)
a given paradigm, it is possible to construct linear spéittars werM | wT Royw
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and Rroyou € R the spatial covariance matrices of thosevith =, j = 1,..., J, the locations of an equally spaced grid
components of the EEG originating within/outside the RQl arwith J points within the ROl andv some numerical constant.
measured at thd/ electrodes. Since (2) is in the form of theThe electric field at thel/ electrodes on the scalp due to
well-known Rayleigh quotient, solutions to (2) are given bgources within the ROI can thus be approximated as
the eigenvectors of the generalized eigenvalue problem

CL’RO|(t) = Osz(t), (10)

o _ _ _ with the leadfield matrix, ¢ R *37 describing the projection
Since it further holds that for an eigenvalie with associated strength in x, y, and z-direction of the sources at sherid

Rrow = ARoytw. (3

eigenvectorw* T i points to theM electrodes, angh(t) € R/ representing the
VoW TRRO'“’ 7 4) dipole moments of the/ sources. Since has zero mean and
w*' Royw* the EEG is assumed to be stationary, the covariance matrix of

the eigenvector of (3) with the largest eigenvalue cornstitu xro; can be written as
the desired Beamformer.
It then remains to determine the covariance matrices

Rroyour These can not be computed directly from measurgglih R the source covariance matrix of sources within the

data and thus have to be approximatgd. Towards this, figgh). Inserting (11) into (8) and letting = 5\/&2’ the desired
note that the EEG generated by the brain and measurgfl alypaiig) filter is finally obtained as the eigenvector with the

locations on the scalp is given by [17] largest eigenvalue of the generalized eigenvalue problem

Rrol = o®LR,LT, (11)

2(t) = [ Lirr)PU 0V () (5) LR, ITw = ARuw. (12)

v The leadfield matrix. describes the projection of sources

with V' the volume of the brainP : R® x R ~— R® the \yithin the ROI to the EEG electrodes and thus implicitly
tissue dipole moment (source strength) at positiband time  gefines the ROI. It has to be computed using a suitable model
t in x, y, and z-direction € R*M the vector describing of EEG volume conduction (reviewed in [1]). In this study, a
the x, y, and z-position of thé/ sensors on the scalp, andgyr-shell spherical head model is utilized [22]. Furtherm

L : R® x R® + RM*3 the so called leadfield equation,the covariance matrix of EEG sources within the ROI has to be
describing the projection strength of a source with dipolgyecified. In absence of any prior knowledge, it is assumad th
moment in x, y, and z-direction at positiori to the measured p_ equals the identity matrix. The eigenvector of (3) with the
electric potentials at the sensor locations Note that the largest eigenvalue, which constitutes the desired Beangor
leadfield equation incorporates all geometric and condeictiy,« can then be computed with standard tools for numerical

properties of the head. Without loss of generality, itisiassd  computation (e.g., with the commaeiy in Matlab).
thatz has zero mean. The integral in (5) can be split up into
the contributions to the EEG from within and from outside the

RO, resulting in C. Beamformer properties
In the derivation of the Beamformer several assumptions are
w(t) = / L(r, v )P(r', t)dV (r') made that warrant a further discussion.

ROI First, it is assumed that EEG sources within and outside the

/ / / ROI are uncorrelated. This assumption is probably viol&bed
+ L(r,7)P(r',1)dV () sources outside but close to the ROI. Nevertheless, this is a

VAROI useful assumption, since it allows formulating the gerieeal
= @roi(t) + Tout). (6) eigenvalue problem in terms of the observed EEG covariance

Assuming stationarity of the EEG and uncorrelatedness patix. In this way, the Beamformer can be adapted to

EEG sources within and outside the ROI, the covariance matffcorded data. In principle, it is also possible to estinihee
of the EEG recordings is given by covariance matrixoyt in the same manner d&o), i.€., using

a purely model-based approach, and to compute the desired
Ry = Rroi + Rout. (7) spatial filter directly from (3). However, if the Beamformier
adapted to the recorded data, then the attenuation of source
B focuses on regions of the brain outside the ROI that interfer
Rroiw = AR w, (8) most with sources inside the ROI. In this way, the Beamformer

with % — A/(1 1+ ). Since &, can be estimated from is adapted to the subject- and task-specific current digioiby
= : g within the brain.

recorded EEG data, onliro) remains to be determined. This Second, it is assumed that the EEG is stationary, implying
can be approached by first approximating the integral of tg

Inserting (7) into (3) then results in

contribution of sources within the ROI to the measured EE at the covariance matnce; of sourceslwuhl'n and outside t
in (6) as Ol do not change over time. There is evidence, however,

J that EEG displays non-stationary behavior [18]. While this
xrol(t) = QZL(T’T;)p(r;7t)7 9) is neglected in the derivation of the Beamformer, the non-
=1 stationary nature of EEG signals can be taken into account
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by updating the EEG covariance matrl, in certain inter- B. Experimental data

vals, and computing a new spatial filter using the updatedren healthy subjects (S1-S10) participated in the experi-
covariance matrix. In this way, a quasi-static Beamforn@®r ¢ mental evaluation. Of these two were female, eight weret righ
be realized. The performance of such an update schemdfided, and their average age was 25.6 years with a standard
investigated in Section |II. _ deviation of 2.5 years. Subject S3 had already participated
Third, the source covariance mat, is assumed to equal yyice in a BCI experiment, while all other subjects were paiv
the identity matrix. This implies that all EEG sources withitq BCls. EEG was recorded atf — 128 electrodes placed
the ROI are uncorrelated and of equal strength. This surglycording to the extended 10-20 system. Data was recorded
constitutes an unrealistic assumption. However, in alisefc 5t 500 Hz with electrode Cz as reference. Four BrainAmp
any knowledge on the actual source covariance matrix fora@nplifiers were used for this purpose, using a temporal gnalo
given dataset this is the most simple prior. It should be“hOtEhigh-pass filter with a time constant of 10 s. The data was
however, that the absolute strength of sources within the R _referenced to common average reference offline. Eigetro
is irrelevant, since any scaling df, is absorbed into the imdpedances were belo) k2 for all electrodes and subjects
eigenvalues in (12) and thus has no influence on the obtaingdihe beginning of each recording session. No trials were
Bequormgr. _ rejected and no artifact correction was performed. For each
Finally, it should be emphasized that any model of EEQpject, the locations of the 128 electrodes were measared i
volume conduction can be used to compute the leadfield maifiee dimensions using a Zebris ultrasound tracking system
in (12). For reasons of simplicity, only a four-shell splkafi gnd stored for further offline analysis.
headmodel is considered in this study. It can be expected thaafier the recording sessions, the recorded EEG of each
more realistic models, such as boundary element- or finégpject was visually inspected for eye blinks, movemerit art
element models (BEM/FEM) [1], also lead to more accuratgcts, and artifacts caused by interference of electridcdsv
Beamformers. by an experienced EEG user. This was not done to reject
artifactual trials, but rather to assess the percentageia$ t
I1l. EXPERIMENTAL RESULTS contaminated by artifacts. The percentage of trials forheac

. . e o subject determined to contain substantial amounts ofaatsif
In this section, spatial filtering by Beamforming is comp:hredurmg the actual motor imagery phase are summarized in

with CSP and Laplacian spatial filtering on experimentgly, | please note that while manual labeling of artifactua
data from a two-class motor-imagery paradigm. Two differegg|s by an experienced EEG user is a subjective measure,

Beamforming schemes are investigated, ternseatic and e pelieve this to constitute a more sensitive measure than a
block-adaptiveBeamforming. CSP and Laplacian spatial fil ;1omatic identification of artifactual trials. The recetddEEG
tering are chosen for comparison with Beamforming due {fy5 and trials marked as artifactual can be made available
their excellent performance in motor imagery paradigms a%on request. As can be seen from Tab. I, subjects S3 and S4
popularity in the BCl-community. Furthermore, prelimipar displayed very few artifactual trials (below 10%), subjeS6-
results from a study with real-time feedback are presentedgg displayed a moderate amount of artifactual trials (betwe
10% and 20%), and subjects S1, S2, S5, and S10 showed a
A. Experimental paradigm large amount of arFifactuaI trials (abO\_/e 20% and up to 74%).
Subsequently, subjects S3 and S4 will be referred to as clean

The experimental paradigm adopted in this study was g§hiects, subjects S6-S9 as moderate subjects, and suBjict
follows. Each subject was seated in a dimly lit and shieldegh "s5 and S10 as noisy subjects.

room, approximately two meters in front of a silver screen. A

trial started with the central display of a white fixation €50 ]

After three seconds, a white arrow was superimposed on fhe Evaluation procedure

fixation cross, either pointing to the left or the right. Sedif To evaluate the performance of the different algorithms for
were instructed to perform haptic motor imagery of the left gpatial filtering as a function of the amount of availablenta
the right hand during display of the arrow, as indicated lgy thing data a bootstrapping procedure was employed. For each
direction of the arrow. After another seven seconds thenarresubject; trials from each class were drawn randomly from the
was removed, indicating the end of the trial and start of thhecorded data and used as the training set, while the remgaini
next trial. While subjects were explicitly instructed to fmem trials served as the test set. Then, spatial filtering, featu
haptic motor imagery with the specified hand, i.e., to imagircomputation, and classification were performed as destribe
feeling instead of visualizing how their hands moved, thecex below. For each size of the training set this procedure was
choice of which type of imaginary movement, i.e., movingepeated ten times in order to obtain a sensible estimateeof t
the fingers up and down, gripping an object, etc., was laftassification accuracy. The size of the training set wakeslar
unspecified. A total of 150 trials per condition were cargedd from n = 10 to n = 100 trials per class in steps of ten trials.
by each subject, with trials presented in pseudo-randaimize Furthermore, two different time windows were investigated
order. Please note that in the employed experimental maradifor all spatial filter- and feature computations in order to
subjects were not free to choose when to initiate a certassess the influence of different trial length on perforreanc
motor imagination. Hence, the present study is restricted The first time window, subsequently termed the long time
synchronous BCls. window, ranged from 3.5 - 10 s within each trial, i.e., 500
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TABLE |
PERCENTAGE OF TRIALS CONTAMINATED BY ARTIFACTS

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
23.7% | 55.3% | 5.0% | 6.3% | 23.3% | 14.3% | 14.6% | 11.33% | 15.0% | 74.0%

ms after presentation of the instruction until the end of thenprove numerical stability. The two eigenvectors werelf§nha
trial. The second time window, subsequently termed thetshaombined to form the spatial filtering matri¥’sgr € RM *2,
time window, ranged from 3.5 - 6 s within each trial. Please 4) Spatial filtering by block-adaptive Beamformindn
note that the length of the short time window correspondgock-adaptive Beamforming, Beamformers are not computed
to what is suggested for CSP in [3]. Time windows wergom a fixed set of EEG data, but rather recomputed for
chosen to start 500 ms after visual presentation of the motich trial. In this way, Beamformers can be adapted to non-
imagery instruction because subjects require severalredndstationarities in the recorded EEG. Here, the parameters em
milliseconds to initiate motor imagery of the specified han(ﬂjloyed for block-adaptive Beamforming were chosen idatic
This is reflected in ERD/ERS onset roughly 500 ms aftés those used in static Beamforming as described above.
presentation of the instruction [19]. For each trial, a separate EEG covariance matrix was then

1) Spatial filtering by CSP:Spatial filtering by CSP was estimated using the (unlabeled) data from the specified time
carried out with the parameters proposed in [3]. First, theindow, and a trial specific spatial filtering matri¥ggr €
recorded EEG data was bandpass-filtered between 7 and 3aR42*2? was computed as described above.
using a sixth-order Butterworth filter. Then, class-coioditl  5) Feature computation & classificatiorEor all spatial fil-
covariance matrices were computed using data in the spcifiering methods described above the same feature computatio
time window of the training set only. CSP spatial filters werand classification procedure was employed.
computed by solving the associated generalized eigenvalugirst, the spatial filtering matrixV , was used to compute
problem with diagonal loading to increase numerical sitbil the spatially filtered EEG signal(t) = W(T):c(t). Please note
The obtained spatial filters with the three largest/smalleg,at herexz(t) refers to the raw EEG data, i.e., the original
eigenvalues were then combined in the spatial filtering imatiegg recordings without previous temporal filtering. Forteac
Wesp € RM*, trial, a feature vector was then computed by first bandpass-

2) Laplacian spatial filtering: For Laplacian spatial filter- filtering each component of the spatially filtered EEG signal
ing, the large Laplacian spatial filter as described in [14h 20 frequency bands of 2 Hz width ranging from 1 to 41 Hz
was employed. Specifically, electrodes C3/C4, situated ov@again using sixth-order Butterworth filters), and aftemiea
the left/right motor cortex, were chosen as the filter centecomputing the log-bandpower in each frequency band using
and the four second closest electrodes to C3/C4 were uskd specified time window. This resulted in a feature vecfor o
to compute the surface Laplacian, thereby forming the apati20 dimensions for CSP, and of 40 dimensions for Laplacian
filtering matrix Wip € RM*2, filtering, static Beamforming, and block-adaptive Beamfor

3) Spatial filtering by static Beamformingdn static Beam- ing.
forming, Beamformers are computed once using a set ofFor actual classification, logistic regression with-
(unlabeled) training data. The Beamformers are then applieegularization as described in [12] was employed. This lin-
to new data, i.e., the test set, without further update.icStatar classifier was chosen for two reasons. First, non-linear
Beamformers were computed here by first highpass-filteritassifiers do not significantly improve classification aacy
the recorded EEG with 0.5 Hz cut-off frequency using a sixtlin non-invasive BCls based on bandpower features while
order Butterworth filter in order to remove baseline driftseedlessly increasing complexity [7], [15]. Second, ordgne
The EEG covariance matrik, was then computed using thefrequency bands provide information on the user’s intentio
temporally filtered data of all trials in the training set @hé in motor imagery paradigms, and these frequency bands
specified time window. In order to direct two Beamformers atary across subjects [19]. It thus can be expected that most
the left and right motor cortex respectively, two spherR@lls dimensions of the feature vector are irrelevant, but it is
of 1 cm radius located 1.9 cm radially below electrodes Qhknown which ones are relevant for a certain subject. For
and C4 were chosen. The associated leadfield matiiges this class of classification problems, i.e., a high-dimenasi
and Lo, were computed by placing radially oriented dipolefeature space with mostly irrelevant features, it is proued
onto an equidistant grid of 2 mm grid distance within eaci6] that logistic regression witli; -regularization possesses
of the ROIs, and calculating the projection strength to eaehsample complexity that only grows logarithmically in the
of the M = 128 electrodes using a four-shell spherical headumber of irrelevant features. Rotationally invarianssiéiers,
model [22]. Note that for each subject the measured eleetroglich as support vector machines, have a worst case sample
locations were radially projected onto the outermost sbkll complexity that grows linearly in the number of irrelevant
the employed head model. Assuming a unit source covariarfeatures. Hence, for this class of problems logistic resjoes
matrix R, the two desired Beamformers were then determinedth [,-regularization can be expected to display a faster
by computing the eigenvector with the largest eigenvalue obnvergence (in terms of the required amount of training)dat
(12) for each of the two leadfield matricégs and Lc4. Again, to its minimum error than other state-of-the-art classiitra
diagonal loading was used in the eigenvector computation atyorithms. Note that logistic regression usingegularization
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leads to sparse weight vectors, and thus can also be unaigrsto Regarding the performance of spatial filtering for differen
as a feature selection procedure. For each subject, tgedeity types of subjects (cf. Sec. IlI-B and Tab. 1), considerable
and algorithm used for spatial filtering, tlie-regularization differences can be observed (Tab. 1V). For noisy subjects,
constant was determined by five-fold cross-validation an tlstatic Beamforming outperforms CSP by on average 11.5%
training set. This regularization constant was then usadchio and Laplacian spatial filtering by on average 5.5%. Static-
another classifier using all features from the training aetl and block-adaptive Beamforming perform similar, with glsti

the resulting logistic regression model was used to chasisd advantage for static Beamforming of 2%. This observation is

trials in the test set. also valid but less pronounced for moderate subjects, factwh
static Beamforming outperforms CSP and Laplacian spatial
D. Results filtering by 5.5% and 2.2%, respectively. For clean subjects

The obtained classification results are shown in Tab. Il am@® substantial differences between the different algorith
Fig. 1 for the long time window and in Tab. Ill and Fig. 2 forused for spatial filtering can be observed, i.e., differsnme
the short time window, both times as a function of the numbbelow 2%. If only the maximum training set size is considered
of training trials per condition. The mean performance of aspatial filtering by CSP slightly outperforms the other noeth
subjects across all training set sizes is shown in Tab. IV. on the clean subjects, but differences again remain below 2%

In general, the obtained classification results differ gaps Finally, averaged across all subjects and training ses sitagic
tially between subjects. Subjects S3 and S4 achieve classifiBeamforming outperforms Laplacian spatial filtering by%,6
tion accuracies close to 100% for all spatial filtering meho which in turn outperforms CSP by 3%. Note, however, that the
while subjects S1 and S7 do not perform substantially aboseerage performance across all subjects is biased by & large
chance level for any type of spatial filtering. The perforcean number of noisy than clean subjects.
of the remaining six subjects ranges from mediocre to ratherln summary, the performance of different spatial filters is
well, with substantial differences due to the algorithm dusestrongly subject-specific and varies with the percentage of
for spatial filtering. It is noteworthy that the capabilityf o trials containing substantial amounts of artifacts. Whibe f
subjects to operate a BCI appears not to be determined Migtually artifact-free EEG recordings CSP performs dligh
the percentage of artifactual trials. While subjects S3 a#d Better than the other approaches, Beamforming performs sub
with the lowest percentage of artifactual trials (cf. Tap. Istantially better than CSP and Laplacian spatial filterimg o
also perform best, subject S2 achieves very high classtficat EEG recordings heavily contaminated by artifacts. On ay&sra
accuracies using unsupervised methods in spite of more thensubstantial differences can be observed between saitic-
50% of all trials containing substantial amounts of artifac block-adaptive Beamforming.
Conversely, subject S7 does not achieve classification-accu
racies substantially above chance in spite of only a moder&: Spatial filters and spectral band weighting
amount of artifactual trials (14.6%). Regarding the défer  Fig. 3 illustrates how the subject-specific performanceénef t
time windows used in the computation of the spatial filterd arspatial filtering algorithms is reflected in the weights gssd
the classification procedure, it is noteworthy that on ayerato each spectral band in the classification procedure.
all methods for spatial filtering perform better using thago As can be seen in this figure, the classification procedure
time window (cf. Tab. 1V). Note, however, that substantiagenerally concentrates on the and on theg-band (roughly
subject-specific differences can be observed for spatiatifig around 12 Hz and from 25-35 Hz, respectively), which is
by CSP. Specifically, the short time window performs bettén agreement with previous reports on motor imagery [19].
than the long time window on subject S2 and S9 whehhere are, however, spatial filter-specific differences. lévhi
using CSP. On average, however, this is counterbalancedfoy spatial filtering by CSP the classification procedure as-
superior performance of the other subjects using the lang ti signs strongest weights to theband, both Beamforming and
window. Hence, if not stated differently, classificatiorsus Laplacian spatial filtering appear to favor tlieband. This
will subsequently refer to the long time window. observation is particularly pronounced for subject S3.elot

Regarding a comparison of the algorithms used for spattawever, that in spite of a focus on different spectral baaits
filtering, different algorithms perform best for differeatib- spatial filters achieve excellent classification resultsstihject
jects. Averaging across all training set sizes, best peidoce S3. As of now, we can not provide an explanation for this
across both time windows is achieved for three subjects bjpservation.
using CSP (S1, S6 and S9), for four subjects by using staticTypical spatial filters focusing on the left motor cortex
Beamforming (S3, S5, S7, and S10), for two subjects usiegmputed for subjects S3, S6 and S8 (using the long time
block-adaptive Beamforming (S4 and S8), and for one subjegindow) are shown in Fig. 4. These subjects are chosen
using Laplacian spatial filtering (S2). If only the maximunsince S3 shows excellent performance for all spatial filters
training set size is considered, five subjects perform b&sgu S6 performs best when using CSP, and S8 performs best when
CSP (S1, S3, S4, S6, and S9), three subjects perform hesing Beamforming. Interestingly, spatial filters computer
using static Beamforming (S2, S5, and S7), and two subjesisbject S3 differ noticeably in spite of similar classifioat
perform best using block-adaptive Beamforming (S8 and S1@grformance. While a typical spatial filter obtained by CSP
It should be noted, however, that differences due to differeshows a dipolar pattern with an additional focus on the
spatial filtering within subjects range from minor (e.g., irtontralateral hemisphere, spatial filters obtained by Beam
subjects S3 and S4) to quite substantial (e.g., in subje@}. Sling display a center-surround pattern that is similar to the
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Fig. 1. Classification accuracies in percent for subject&S$Q using thdong time window as a function of the number of training trials pendition for
spatial filtering by Common Spatial Patterns (CSP), stationBeeming (SBF), block-adaptive Beamforming (BBF), and Lapmacspatial filtering (LP).
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Fig. 2. Classification accuracies in percent for subjectS$Q using theshort time window as a function of the number of training trials pendition for
spatial filtering by Common Spatial Patterns (CSP), stationBeeming (SBF), block-adaptive Beamforming (BBF), and Lapacspatial filtering (LP).

Laplacian spatial filter. This is in agreement with the poeé CSP. However, the last row of Fig. 4, showing spatial filters
observation that in subject S3 Beamforming and LP favaomputed for subject S8, illustrates that in some subjects
similar spectral weighting in thg-band, while CSP appears toCSP fails to construct sensible spatial filters. Here, CSP
lead to a focus on thg-band (cf. Fig. 3). Note, however, thatdoes not compute spatial filters with a strong focus, resulti
spatial filters obtained by Beamforming appear more complex a classification accuracy only slightly above chance. In
than the corresponding Laplacian spatial filter, which Boal comparison, both Beamforming approaches compute spatial
reflected in a higher classification accuracy. Further nioé t filters with a strong focus on and close to electrode C3 that
for subject S3 all spatial filters focus on an area directigppear similar in shape to the spatial filter computed by CSP
underneath electrode C3. This is different for subject $6, ffor subject S3. Accordingly, the Beamforming approaches
which CSP has a slightly more central and parietal focus thanhieve a classification accuracy close to 80% in subject S8.
the other spatial filters. This illustrates an advantagehef tFinally, note that subject S8 displayed only a moderate anou
supervised CSP approach, i.e., the capability to autoaibtic of artifactual trials, indicating that contamination bytifacts
determine the region of the brain most relevant for inferinis not the only cause for the failure of CSP to compute seasibl
the subject’s intention. In subject S6, Beamforming and L&patial filters in some subjects.

probably slightly miss the most relevant ROI, resulting in

a slight decrease in classification accuracy in comparison t
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TABLE I

MEAN CLASSIFICATION ACCURACY FOR THELONG TIME WINDOW IN PERCENT AS A FUNCTION OF THE NUMBER OF TRAININGIRIALS PER CONDITION
FOR SPATIAL FILTERING (SF)BY COMMON SPATIAL PATTERNS (CSP),STATIC BEAMFORMING (SBF),BLOCK-ADAPTIVE BEAMFORMING (BBF), AND
LAPLACIAN SPATIAL FILTERING (LP).

TSR | o
—— BBF
——LP 0.01

0.08
0.06

0.04
4
0.02f"

Number of training trials per condition

’S”b‘ea‘ SF H 10 | 20 | 30 | 40 | 50 | 60 | 70 | 8 | 90 | 100 ‘ Mea“‘
CSP [[ 524 | 56.0 | 558 | 55.7 | 555 | 57.7 | 60.4 | 586 | 582 | 50.5 | 57.0

S1 | SBF || 522 | 534 | 555 | 57.1 | 57.7 | 57.0 | 58.8 | 59.6 | 58.8 | 59.5 | 57.0
BBF || 50.3 | 52.0 | 53.9 | 52.7 | 54.2 | 55.7 | 552 | 57.5 | 58.8 | 57.6 | 54.8

LP || 521 | 53.3 | 52.1 | 534 | 556 | 551 | 52.9 | 572 | 55.0 | 56.7 | 54.3

CSP [ 59.7 | 642 | 67.6 | 646 | 66.3 | 629 | 70.3 | 65.1 | 69.8 | 71.6 | 662

S2 | SBF || 831 | 886 | 90.7 | 925 | 922 | 93.7 | 91.1 | 936 | 942 | 952 | 915
BBF || 82.4 | 85.7 | 89.0 | 89.9 | 89.8 | 90.6 | 924 | 92.4 | 93.0 | 934 | 89.9

LP || 837 | 89.4 | 920 | 92.8 | 937 | 934 | 935 | 93.4 | 932 | 941 | 91.9

CSP |[ 786 | 923 | 96.0 | 96.7 | 981 | 979 | 98.1 | 989 | 98.2 | 989 | 954

S3 | SBF || 947 | 956 | 96.4 | 965 | 96.5 | 965 | 96.4 | 97.6 | 96.9 | 97.2 | 96.4
BBF || 956 | 94.9 | 96.4 | 962 | 951 | 96.8 | 96.9 | 97.1 | 97.4 | 97.0 | 96.4

LP || 89.2 | 921 | 932 | 91.7 | 93.1 | 927 | 93.1 | 945 | 936 | 948 | 92.8

CSP |[ 852 | 933 | 97.3 | 974 | 97.9 | 99.1 | 97.0 | 988 | 98.8 | 98.3 | 964

S4 | SBF || 95.0 | 96.3 | 96.0 | 96.0 | 96.8 | 97.2 | 96.1 | 97.1 | 97.8 | 97.2 | 96.6
BBF || 941 | 97.0 | 975 | 965 | 984 | 98.7 | 97.7 | 97.8 | 986 | 983 | 975

LP || 90.2 | 940 | 948 | 944 | 96.2 | 96.3 | 95.7 | 946 | 96.0 | 96.0 | 94.8

CSP [ 76.7 | 755 | 82.3 | 783 | 79.8 | 865 | 88.4 | 89.8 | 89.0 | 88.3 | 836

S5 | SBF || 851 | 90.1 | 920 | 916 | 93.2 | 922 | 924 | 936 | 920 | 92.2 | 914
BBF || 82.4 | 84.8 | 87.5 | 88.6 | 89.5 | 89.3 | 89.7 | 90.3 | 88.0 | 89.8 | 88.0

LP || 814 | 87.3 | 86.8 | 89.4 | 904 | 90.2 | 90.2 | 90.1 | 89.2 | 88.3 | 883

CSP [ 700 | 81.6 | 89.4 | 902 | 92.0 | 9L.7 | 929 | 91.9 | 93.0 | 91.7 | 884

S6 | SBF || 75.1 | 85.0 | 862 | 89.1 | 89.4 | 89.7 | 89.9 | 90.0 | 89.5 | 88.2 | 87.2
BBF || 646 | 742 | 79.4 | 812 | 80.4 | 823 | 815 | 81.6 | 80.8 | 82.1 | 78.8

LP || 714 | 786 | 792 | 81.8 | 838 | 81.3 | 82.4 | 81.8 | 852 | 848 | 810

CSP [ 50.1 | 51.2 | 51.3 | 505 | 51.7 | 49.6 | 49.8 | 51.5 | 50.0 | 49.1 | 505

S7 | SBF || 512 | 531 | 53.9 | 550 | 57.0 | 57.1 | 56.7 | 59.1 | 57.7 | 59.2 | 56.0
BBF || 516 | 54.1 | 53.9 | 545 | 56.2 | 56.5 | 57.9 | 56.4 | 57.2 | 59.1 | 557

LP || 50.0 | 53.7 | 543 | 54.4 | 56.5 | 528 | 55.9 | 54.6 | 57.0 | 55.2 | 54.4

CSP [ 539 | 528 | 559 | 605 | 50.7 | 60.0 | 56.8 | 54.9 | 518 | 57.0 | 563

S8 | SBF || 56.9 | 69.2 | 726 | 76.0 | 754 | 76.9 | 76.1 | 78.1 | 761 | 755 | 733
BBF || 637 | 70.8 | 735 | 748 | 758 | 77.0 | 77.3 | 77.0 | 793 | 788 | 748

LP || 57.9 | 65.4 | 652 | 68.5 | 705 | 69.1 | 69.6 | 719 | 70.4 | 705 | 67.9

CSP [ 570 | 61.7 | 66.9 | 69.8 | 69.4 | 634 | 634 | 67.1 | 724 | 671 | 658

S9 | SBF || 56.0 | 59.8 | 61.9 | 63.7 | 62.4 | 655 | 64.8 | 67.2 | 64.4 | 653 | 63.1
BBF || 575 | 62.6 | 63.5 | 66.5 | 68.4 | 69.2 | 68.7 | 68.4 | 67.4 | 68.0 | 66.0

LP || 60.9 | 64.2 | 665 | 67.2 | 685 | 67.6 | 67.9 | 709 | 69.1 | 68.8 | 67.2

CSP || 57.0 | 62.7 | 67.7 | 735 | 746 | 742 | 752 | 771 | 794 | 794 | 721

S10 | SBF || 77.8 | 797 | 842 | 84.6 | 87.1 | 86.7 | 87.7 | 87.7 | 86.4 | 88.1 | 85.0
BBF || 744 | 80.6 | 830 | 84.0 | 86.7 | 855 | 86.8 | 87.3 | 852 | 89.0 | 84.2

LP || 558 | 630 | 67.8 | 69.4 | 702 | 71.2 | 71.2 | 709 | 71.2 | 735 | 684
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Fig. 3. Normalized mean absolute weights of different spebaads across all training set sizes and both time windowstsrdined by thé; -regularized
logistic regression classifier for Common Spatial Patterr@R)C static Beamforming (SBF), block-adaptive BeamformingKBBnd Laplacian spatial filtering

(LP).
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TABLE Il
MEAN CLASSIFICATION ACCURACY FOR THESHORT TIME WINDOW IN PERCENT AS A FUNCTION OF THE NUMBER OF TRAININGTRIALS PER CONDITION
FOR SPATIAL FILTERING (SF)BY COMMON SPATIAL PATTERNS (CSP),STATIC BEAMFORMING (SBF),BLOCK-ADAPTIVE BEAMFORMING (BBF), AND
LAPLACIAN SPATIAL FILTERING (LP).

Number of training trials per condition
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 ‘
CSP [[ 50.8 | 50.6 [ 544 [ 523 | 525 [ 542 [ 508 | 55.7 | 53.8 [ 543 [ 529
S1 SBF 50.0 | 53.8 | 51.0 | 534 | 54.8 | 53.8 | 53.3 | 54.6 | 54.2 | 54.3 | 53.3
BBF 510 | 50.1 | 51.7 | 51.8 | 545 | 52.4 | 53.7 | 56.2 | 52.2 | 54.6 52.8
LP 509 | 541 | 544 | 56.1 | 554 | 57.3 | 549 | 58.3 | 57.0 | 55.7 55.4
CSP 63.1 | 69.1 | 748 | 76.6 | 79.0 | 80.5 | 86.1 | 85.4 | 86.6 | 88.7 79.0
S2 SBF 845 | 905 | 89.2 | 921 | 90.9 | 92.0 | 916 | 91.6 | 93.8 | 93.7 91.0
BBF 820 | 850 | 87.3 | 879 | 889 | 89.4 | 90.0 | 90.8 | 91.8 | 91.6 | 885
LP 885 | 90.5 | 924 | 925 | 924 | 932 | 921 | 929 | 948 | 94.0 | 92.3
CSP || 634 ] 762 860 | 89.2 | 921 | 937 | 946 | 948 | 956 | 954 | 88.1
S3 SBF 86.7 | 90.5 | 926 | 936 | 93.9 | 943 | 944 | 948 | 946 | 944 | 93.0
BBF 88.4 | 90.0 | 93.3 | 93.1 | 935 | 932 | 934 | 945 | 942 | 939 | 927
LP 823 | 830 | 858 | 876 | 89.6 | 88.8 | 89.4 | 919 | 89.6 | 88.2 87.6
CSP || 684 [ 90.3 [ 910 | 941 | 958 | 96.1 | 958 | 96.1 | 96.7 [ 97.4 | 92.2
S4 SBF 86.6 | 91.8 | 919 | 93.0 | 939 | 943 | 941 | 92.7 | 941 | 94.1 92.6
BBF 843 | 916 | 922 | 928 | 93.2 | 93.6 | 934 | 93.2 | 943 | 946 | 923
LP 86.1 | 904 | 91.2 | 914 | 91.3 | 91.8 | 92.0 | 90.6 | 91.7 | 92.2 | 90.9
CSP 656 | 722 | 765 | 71.8 | 78.0 | 81.4 | 81.8 | 83.4 | 87.1 | 816 77.9
S5 SBF 75.2 | 828 | 86.7 | 865 | 86.5 | 889 | 89.0 | 89.3 | 89.4 | 889 | 86.3
BBF 726 | 815 | 817 | 840 | 86.0 | 86.1 | 87.1 | 87.1 | 84.7 | 869 | 83.8
LP 73.1 | 818 | 832 | 830 | 833 | 831 | 839 | 849 | 822 | 829 82.1
CSP || 627 | 645 [ 769 | 79.6 | 80.7 | 832 | 858 | 853 | 86.8 [ 85.1 | 79.0
S6 SBF 712 | 788 | 80.7 | 82.1 | 83.3 | 83.3 | 823 | 835 | 83.7 | 838 81.3
BBF 595 | 72.0 | 748 | 736 | 80.7 | 79.1 | 80.6 | 80.6 | 828 | 82.4 | 76.6
LP 633 | 705 | 740 | 753 | 748 | 753 | 745 | 751 | 76.5 | 74.0 73.3
CSP || 496 | 51.2 [ 509 | 50.2 | 505 | 53.0 | 49.6 | 50.8 | 52.0 [ 49.8 | 50.8
S7 SBF 509 | 515 | 51.2 | 541 | 535 | 54.7 | 51.6 | 52.8 | 53.2 | 53,5 | 52.7
BBF 511 | 515 | 532 | 53.4 | 51.2 | 53.7 | 54.1 | 52.8 | 54.6 | 54.0 53.0
LP 50.7 | 52.7 | 526 | 544 | 57.1 | 57.1 | 57.2 | 56.9 | 56.0 | 56.1 55.1
CSP || 53.0 | 53.0 [ 582 | 61.0 | 588 | 609 | 57.2 | 571 | 58.1 [ 63.5 | 58.1
S8 SBF 620 | 721 | 70.7 | 725 | 753 | 756 | 744 | 773 | 76.9 | 76.9 73.4
BBF 589 | 63.2 | 655 | 67.0 | 69.0 | 71.6 | 68.0 | 69.9 | 705 | 69.7 | 67.3
LP 544 | 59.3 | 59.6 | 59.6 | 61.7 | 62.1 | 61.8 | 62.9 | 63.5 | 63.7 | 60.9
CSP || 553 | 614 [ 618 | 685 | 721 | 709 | 736 | 745 | 758 [ 76.6 | 69.0
S9 SBF 59.6 | 64.2 | 62.8 | 658 | 67.8 | 684 | 675 | 70.3 | 69.4 | 69.9 | 66.6
BBF 60.5 | 63.3 | 64.7 | 659 | 68.2 | 683 | 67.1 | 67.4 | 69.3 | 68.3 | 66.3
LP 58.1 | 624 | 66.2 | 681 | 68.1 | 69.9 | 68.0 | 70.6 | 70.8 | 70.6 67.3
CSP || 547 | 615 [ 60.2 | 689 | 69.8 | 69.1 | 725 | 734 | 76.4 [ 76.0 | 68.2
S10 SBF 677 | 730 | 793 | 772 | 773 | 79.1 | 812 | 81.3 | 80.3 | 81.4 77.8
BBF 644 | 729 | 772 | 782 | 795 | 80.2 | 79.9 | 80.1 | 79.1 | 815 77.3
LP 56.3 | 61.8 | 63.1 | 644 | 66.0 | 66.7 | 643 | 65.8 | 67.6 | 68.1 | 64.4

’Subject‘ SF H Mean‘

TABLE IV
MEAN CLASSIFICATION ACCURACY IN PERCENT FOR DIFFERENT SUBJET TYPES(USING THE LONG/SHORT TIME WINDOW) ACROSS ALL TRAINING SET
SIZES.

e Subjects At
Spatial filter Noisy Moderate Clean Mean across subjects
CSP (long/short)| 69.7 /69.5| 65.3/64.2| 95.9/90.1 7237715
SBF (long/short) | 81.2/77.1 | 69.9/68.5 | 96.5/92.8 79.8/ 76.8
BBF (long/short) | 79.2 / 75.6| 68.9/65.8| 96.9/92.5 78.6 / 75.1
LP (long/short) | 75.8/73.6| 67.6 /64.1| 93.8/89.3 76.1/72.9
F. Beamforming with realtime feedback trial were then calculated recursively at every sample §tep

To establish the feasibility of Beamforming for BCIs with?°t using a sliding-window but in an accumulative manner),
real-time feedback, the experimental setup was adaptekin §1d the current estimate was fed into the previously trained
following way. First, a certain number of training trials rge 109iStic regression model. The output of the model at each
recorded using the same experimental paradigm as descrif@giP/é Point, ranging from zero to one, was then presented
in Section Ill-A. This training data set was then used t (he subject by drawing a white filled square on the screen.
compute two static Beamformers and train a logistic regrebP® output of the model was linearly mapped to the horizontal
sion classifier with; -regularization as described above. AftePOSition of the square, with an output of zero mapped to
training, real-time feedback was provided to the BCl-usdf® €ft border and an output of one mapped to the right
This was carried out by sending the recorded EEG data WQrder of the screen. The horizontal position of the square
TCP/IP to Matlab/Simulink running at 500 Hz. The two stati"us informed the BCl-user of the certainty of the classifier
Beamformers were then applied to every new data sample, Ut her/his intention (with the left/right border of theeen
the resulting two extracted EEG components were bandpadglicating 100% certainty of an imaginary movement of the
filtered as in the offline evaluation procedure. The variancd€™/ight hand). To further motivate the subject, two venit

of the temporally and spatially filtered time series within §0X€S were drawn at the left and right borders of the screen
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Fig. 4. Set of typical spatial filters focusing on left motortesx obtained by Common Spatial Patterns (CSP), static Beamrigr(SBF), block-adaptive
Beamforming (SBF), and Laplacian spatial filtering (LP) faiming set size of 100 trials per condition and the long timadeiv. Plotted with [6]. Colors
ranging from blue to red indicate normalized electrode wisigh

into which the subject had to move the white square. Also, IV. DISCUSSION

the color of the centrally displayed arrow was set to green orj, his article, an alternative to supervised algorithms fo

red, depending on whether the output of the classifier leadd@atia| filtering in the context of non-invasive BCls was-pre

a correct decision or an error. Each trial ended after a preggnied. Based on the principle of Beamforming, spatiarsilte

time, or if a certain threshold of certainty of the classifiefere constructed that extract EEG sources originatingimvith

was achieved. This threshold criterion was only checkeer afpecific ROIs within the brain. In this way, neuro-physidtag

a certain minimum time into each trial to ensure sensible oy knowledge can be utilized to optimally attenuaGE

estimates of the variances of the EEG components. Finallyrces not providing information on a subject’s intention

each trial began with a pause of 3 s. for a given experimental paradigm. The main advantage of
Beamforming is its unsupervised nature, rendering it robus
against artifactual EEG components.

Due to the excellent performance in the offline experiment, The proposed algorithm was experimentally validated in a
subject S4 was asked to perform again in the onlireo-class motor imagery paradigm, and it was shown that
experiment. Twenty-five trials per condition were recordespatial filtering by Beamforming substantially outperferm
as training data, corresponding to a training time of eigkpatial filtering by CSP if the recorded EEG is strongly con-
minutes and twenty seconds. For the online experiment ttaaninated by artifactual components. On virtually artifree
regularization constant used to train the logistic redoess data sets CSP performed slightly better than Beamforming.
model was not determined by cross-validation, but rathEurthermore, Beamforming could be shown to consistently
heuristically tuned on the offline data sets to a genericevaloutperform Laplacian spatial filtering. Finally, the feaiBty of
found to work well across subjects. Then, five blocks of twentonstructing BCls with real-time feedback using Beamfasme
trials per condition were carried out with feedback prodide was demonstrated.
with a break of approximately two minutes between each It should be noted that in this study only a two-class motor-
block. The obtained classification results are shown in Vab. imagery paradigm has been considered. In principle, dfitia
along with the minimum and maximum trial lengths and theering via Beamforming can be easily extended to multislas
thresholds for termination of a trial. The mean classifarati paradigms. For example, in motor-imagery paradigms using
accuracy across all blocks was 90.0%, which is within thaultiple body parts several Beamformers can be constructed
range expected due to the classification accuracy obtaingith the ROIs focused on those regions of the motor cortex
by subject S4 in the offline experiment using the stati@presenting the specific parts of the body. However, it iesna
Beamforming approach with the same amount of trainirtg be experimentally established if Beamforming also @igpl
data (cf. Tab. II). A video of this experiment can be watcheithe advantageous properties observed here if it is applied t
at http://www.lsr.ei.tum.de/research/videos/biomedicaROls buried deep within the cortex, e.g., if motor imagery of
engineering/one-dimensional-cursor-control-by-a-non the feet is utilized.
invasive-brain-computer-interface/ Regarding a fair comparison of CSP and Beamforming, it
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TABLE V
RESULTS OF THE ONLINE EXPERIMENT FOR SUBJECS$4.

11

Block # | Min trial length | Max trial length | Thresholds| Classification accuracy|
1 9.99 s 10 s [0.10.9] 92.5%
2 9.99 s 10 s [0.10.9] 87.5%
3 6s 10 s [0.10.9] 87.5%
4 6s 30s [0.10.9] 92.5%
5 6s 30s [0.10.9] 90.0%

should be further noted that both algorithms can be improve@] J.F. Cardoso. Blind signal separation: statisticahgiples. Proceedings

in several ways. Instead of automatically selecting a set
spatial filters obtained by CSP, spatial filters can also b
visually inspected and selected according to prior knogded

f
6]

on meaningful filter topographies. While this can be expectel]

to increase the robustness of CSP, it requires expert ssjmaTv

and thus limits the routine applicability of BCls. Furthesta
that several heuristics exist to finetune CSP [3]. In the cadél
of Beamforming, the probably most relevant factor affegtin 4
classification accuracy is a misplaced ROI. In this studylsRO

were chosen rather arbitrarily at locations assumed tadtecl

the left and right motor cortex. It is expected that clasatfan
performance can be further improved by a subject-specific

adaptation of the location and size of the ROIs using cross-
validation on the training set. Furthermore, it would besint

esting to determine optimal generic, i.e., subject-indejpat,
ROls for a given experimental paradigm. For other factoas th

affect Beamformer performance and that could be improveg,
on please also confer Section II-C.

In summary, we do not wish to argue that either CSP or

Beamforming perform superior in general, but rather seta b(ﬁw]
methods as complimentary approaches to spatial filtering in
non-invasive BCIs. While CSP probably provides theoreljcal(14]

optimal spatial filters [9], Beamforming can be particwarl

(10]

11]

useful if CSP fails to compute sensible spatial filters - whet [15]
this is due to subjects not being able to induce strong mod-
ulations of their u-rhythm, a strong contamination of the[16]
recorded EEG by artifactual components, or too few training
trials being available. As such, we believe that Beamfogmin
might prove to be particularly useful when working withy,,
subjects in late stages of ALS, since here experiments lysual
have to be conducted in clinical environments under noR3l
optimal conditions. Finally, we would like to point out that
the observation of CSP and Beamforming favoring differento]
spectral bands might indicate that both approaches extract
(at least partially) independent information on the sutgec g,
intention. As such, a combination of CSP and Beamforming
might prove to be useful.

(1]
(2]

(3]

(4]
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